Citation
Catégorie
Tag – étiquette
Auteur
Info
Rechercher par n'importe quelle lettre



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits... Recherche mots ou phrases tous azimuts... Outil de précision sémantique et de réflexion communautaire... Voir aussi la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats ... Lire la suite >>
Résultat(s): 10
Temps de recherche: 0.0296s

au-delà

Dans le monde astral, le temps et l'espace ne sont pas fixes. On peut voyager instantanément d'un point à un autre, comme si les lois de la relativité étaient suspendues. Cela ressemble étrangement au concept quantique de non-localité, où deux particules peuvent être connectées instantanément, peu importe la distance qui les sépare.

 



 

Auteur: Fred Alan Wolf

Info: The Yoga of Time Travel (2004)

[ infra-monde ] [ subatomique ]

 

Commentaires: 0

Ajouté à la BD par miguel

sciences

Le terme relativité se réfère au temps et à l'espace. Selon Galilée et Newton, temps et espace étaient des entités absolues, et les systèmes en mouvement de l'univers dépendaient de ce temps et de cet espace absolus. C'est sur cette conception que s'est construite la science de la mécanique. Les formules qui en résultent suffisent pour tous les mouvements lents, mais on constate qu'elles ne sont pas adaptées aux mouvements rapides de l'électrodynamique.

Auteur: Lorentz Hendrik Antoon

Info:

[ saut conceptuel ] [ infra-monde ]

 

Commentaires: 0

Ajouté à la BD par miguel

nanomonde

Même si nous ne pouvons pas les voir, nous savons que ces particules virtuelles sont "vraiment là" dans le vide car elles laissent une trace détectable de leurs activités. L'un des effets des photons virtuels*, par exemple, est de produire un léger changement dans les niveaux d'énergie des atomes. Ils provoquent également un effet d'entraînement, un changement minime dans le moment magnétique des électrons. Ces minuscules mais significatives altérations ont été mesurées avec une grande précision grâce à des techniques spectroscopiques.

Auteur: Davies Paul

Info: The Last Three Minutes: Conjectures About the Ultimate Fate of the Universe. Chapter 3 (p. 32). Basic Books. New York, New York, USA. 1994. *Photon non observable qui n’existe que pendant une interaction électromagnétique

[ quantique ] [ infra-monde ]

 

Commentaires: 0

Ajouté à la BD par miguel

particules élémentaires

Il est actuellement très improbable que les éléments chimiques encore indivisibles soient des substances absolument irréductibles. Il semble plutôt que les atomes des éléments ne soient pas les constituants finaux, mais seulement les constituants immédiats des molécules des éléments et des composés - la molécule étant la première division de la matière, les atomes étant considérés comme le second ordre, à leur tour constitués de particules de matière d'un troisième ordre plus élevé.

(Spéculant en 1870 sur l'existence de particules subatomiques, dans la remarque d'ouverture de l'article par lequel il s'est imposé comme co-découvreur de la loi périodique).

Auteur: Meyer Julius Lothar

Info: 'Die Natur der chemischen Elemente als Function ihrer Atomgewichte' ('The Nature of the Chemical Elements as a Function of their Atomic Weight'), Annalen der Chemie (1870), supp. b, 354. Original German paper reprinted in Lothar Meyer and Dmitry Ivanovich Mendeleyev, Das natürliche System der chemischen Elemente: Abhandlungen (1895), 9

[ infra-monde ]

 

Commentaires: 0

Ajouté à la BD par miguel

classique - quantique

L'univers selon Bohm a en réalité deux faces, ou plus précisément, deux ordres. L'un est l'ordre explicite, correspondant au monde physique tel que nous le connaissons dans la réalité quotidienne, l'autre est un ordre plus profond, plus fondamental que Bohm appelle l'ordre implicite. L'ordre implicite est le vaste holomouvement. Nous ne voyons que la surface de ce mouvement tel qu'il se présente ou s'"explique" d'instant en instant dans le temps et l'espace. Ce que nous voyons dans le monde - l'ordre explicite - n'est rien de plus que la surface de l'ordre implicite tel qu'il se déroule. Le temps et l'espace sont eux-mêmes les modes ou les formes du processus de déploiement. Ils sont comme l'écran d'un jeu vidéo. Les affichages sur l'écran peuvent sembler interagir directement les uns avec les autres, mais, en fait, leur interaction ne fait que refléter ce que fait l'ordinateur de jeu. Les règles qui régissent le fonctionnement de l'ordinateur sont, bien sûr, différentes de celles qui régissent le comportement des figures affichées sur l'écran. De plus, comme l'ordre implicite du modèle de Bohm, l'ordinateur pourrait être capable de nombreuses opérations qui ne sont en aucun cas apparentes à l'examen de l'ordinateur. le jeu lui-même au fur et à mesure de sa progression à l'écran.



 

Auteur: Combs Allan

Info:

[ dualité ] [ vivant - mort ] [ incarné - désincarné ] [ corrélé - décorrélé ] [ infra-monde ] [ nouveau paradigme ]

 

Commentaires: 0

Ajouté à la BD par miguel

intraduisible

kvantovyy (квантовый) : terme polysémique, étroitement lié à la mécanique quantique et à ses concepts fondamentaux. Peut être utilisé dans différents contextes pour désigner :

- Des phénomènes physiques: par exemple, "квантовое явление" (phénomène quantique) désigne un phénomène qui ne peut pas être expliqué par la physique classique et qui nécessite la mécanique quantique pour être compris.

- Des objets physiques : par exemple, "квантовая частица" (particule quantique) désigne une particule élémentaire, comme un électron ou un photon, dont le comportement est régi par la mécanique quantique.

- Des technologies : par exemple, "квантовый компьютер" (ordinateur quantique) désigne un ordinateur qui utilise les principes de la mécanique quantique pour effectuer des calculs.

La découverte des quanta a conduit au développement de la mécanique quantique, une théorie physique qui décrit le comportement de la matière et de l'énergie à l'échelle atomique et subatomique. La mécanique quantique a introduit des concepts nouveaux et parfois contre-intuitifs, tels que la dualité onde-particule, le principe d'incertitude et l'intrication quantique.

Le terme "quantique" est parfois utilisé dans un sens plus large, voire métaphorique, pour désigner quelque chose qui est discontinu, discret ou qui présente des propriétés étranges et inattendues.

En résumé "квантовый" est un terme riche et complexe qui renvoie à un concept fondamental de la physique quantique. Il est important de comprendre sa signification précise dans chaque contexte.

Auteur: Internet

Info:

[ infra-monde ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

nano-monde

Quelle est cette physique inconnue soulevée par le LHC ?

Une équipe internationale de chercheurs a observé pour la première fois une forme de désintégration inédite du boson de Higgs, jetant un éclairage nouveau sur les mystères de l'Univers et suggérant l'existence de phénomènes physiques encore inexplorés. Cette découverte, fruit de l'analyse de données recueillies lors des collisions de protons au Grand Collisionneur de Hadrons (LHC) du CERN, marque un pas de géant dans notre compréhension du monde subatomique.

Le boson de Higgs, une particule élémentaire prédite dans les années 1960 et découverte avec certitude en 2012, joue un rôle crucial dans le Modèle standard de la physique des particules. Il est associé à un champ, omniprésent dans l'Univers, qui confère leur masse aux autres particules. Sa capacité à interagir avec diverses particules et champs avait été mesurée avec précision, confirmant les prédictions jusqu'à présent.

L'observation récente concerne une désintégration du boson de Higgs en un photon, ou quantum de lumière, et un boson Z, une particule sans charge électrique impliquée dans la transmission de la force faible, l'une des quatre forces fondamentales de l'Univers. Selon la théorie, ce processus est extrêmement rare, survenant environ 15 fois sur 10 000 désintégrations. Toutefois, les données recueillies par les collaborations ATLAS et CMS montrent un taux de désintégration supérieur, à 34 occurrences pour 10 000, ce qui soulève des questions sur la possibilité de nouvelles particules ou forces au-delà du Modèle standard.

Cette différence notable par rapport aux prédictions théoriques, bien qu'encore insuffisante pour exclure une fluctuation statistique, suggère la possibilité d'une nouvelle physique. Elle ouvre notamment la porte à des théories telles que la supersymétrie, qui propose une relation entre les particules de demi-spin et de spin entier, offrant des réponses potentielles à certaines des grandes énigmes de la physique, comme la nature de la matière noire et l'énorme écart entre les forces faible et gravitationnelle.

La détection de cette désintégration a nécessité une analyse minutieuse des résultats des collisions de protons au LHC, où les scientifiques ont dû compenser l'incapacité à observer directement le boson Z en mesurant l'énergie des électrons ou des muons produits lors de sa désintégration. Cette prouesse technique souligne l'extraordinaire précision avec laquelle les physiciens peuvent aujourd'hui tester les fondements de notre compréhension de l'Univers.

Les chercheurs se tournent désormais vers l'avenir, avec l'anticipation de données encore plus précises provenant de la prochaine phase du LHC et du futur Grand Collisionneur de Hadrons à haute luminosité, promettant des découvertes sur la structure fondamentale de la matière.

 

Auteur: Internet

Info: https://www.techno-science.net/,  Adrien le 18/02/2024, Source: Physical Review Letters

[ physique fondamentale ] [ infra-monde ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

sciences physiques

Le CERN relance la recherche des " particules fantômes " de l'Univers

Les scientifiques européens du CERN vont lancer la construction d'un nouvel accélérateur de particules, dans l'espoir d'identifier enfin les "particules cachées" de l'Univers.

Les scientifiques du plus grand accélérateur de particules du monde vont disposer d'un nouvel outil qui, selon les chercheurs, pourrait les aider à découvrir la face cachée de l'Univers.

L'Organisation européenne pour la recherche nucléaire (CERN) va entamer la construction d'un nouveau supercollisionneur, le "Futur collisionneur circulaire", qui sera 1 000 fois plus sensible aux particules dites "cachées", ou "fantômes", que l'équipement actuel utilisé par l'organisation.

Les accélérateurs de particules permettent aux scientifiques de recréer les conditions du Big Bang, la théorie physique qui décrit l'apparition de l'Univers.

Dans ce nouvel appareil, les particules seront projetées contre une surface solide, et non plus les unes contre les autres comme dans les accélérateurs actuels

Le collisionneur fait partie du projet SHiP (Search for Hidden Particles) du CERN, un projet en gestation depuis dix ans qui permettra d'étudier certaines des particules les plus discrètes de l'espace.

Richard Jacobsson, physicien principal au CERN, affirme que ce projet pourrait constituer une "avancée considérable" qui redéfinirait la compréhension de la création de l'Univers.

" SHiP est l'une de ces expériences qui pourraient changer le paradigme scientifique et nous faire entrer dans un tout nouveau domaine de connaissances, non seulement sur notre Univers, mais aussi sur notre position dans celui-ci", avance Richard Jacobsson lors d'une interview.

"La plupart des hypothèses que nous avons formulées jusqu'à présent pourraient être réévaluées".

Selon le physicien, les scientifiques n'ont jamais réussi à détecter ce type de particules, car ils ne disposaient pas de la technologie adéquate.

Que sont les particules fantômes ?

D'après Richard Jacobsson, tout ce que nous pouvons voir à l'œil nu depuis l'espace, y compris les étoiles et les planètes, représente environ 5 % de la matière réelle de l'Univers.

Les 95 % restants se répartissent, selon les connaissances actuelles, entre environ 26 % de matière noire et 69 % d'énergie noire, selon le physicien.

Les scientifiques utilisent actuellement le "modèle standard", qui comprend 17 particules différentes, pour expliquer la composition de l'Univers.

En 2012, les scientifiques du CERN ont découvert une nouvelle particule du modèle standard, le boson de Higgs, grâce au Grand collisionneur de hadrons, une découverte qui leur a valu le prix Nobel de physique un an plus tard.

Depuis, les tentatives d'utiliser ce même collisionneur pour mesurer les particules cachées - qui pourraient également constituer la matière noire et l'énergie noire, mais ne font pas partie du modèle standard - se sont toutes soldées par des échecs.

" La découverte du boson de Higgs a comblé un vide sans pour autant prédire quelque chose de nouveau", déclare Richard Jacobsson.

"L'idée de ce projet est née presque par hasard, d'un partenariat entre des personnes issues de différents domaines et désireuses d'explorer la physique sous un autre angle".

Les particules "cachées" ou "fantômes" sont invisibles et ont des connexions physiques plus faibles que les particules déjà découvertes, ce qui les rend difficiles à détecter.

Le Grand collisionneur de hadrons du CERN peut détecter les particules jusqu'à un mètre du site de la collision, mais les particules cachées restent invisibles beaucoup plus longtemps avant de se révéler.

Les détecteurs du nouveau collisionneur du projet SHiP seront donc placés plus loin et produiront davantage de collisions sur une toile de fond fixe afin d'identifier plus facilement ces particules.

La construction des nouvelles installations souterraines du SHiP débutera en 2026 et les premières expériences pourraient avoir lieu vers 2032.

Le futur collisionneur circulaire, quant à lui, sera mis en service dans le courant des années 2040, mais n'atteindra son plein potentiel qu'en 2070, selon des informations rapport de la BBC.

Auteur: Internet

Info: https://fr.euronews.com/ - Anna Desmarais,  26 mars 2024

[ infra-monde ] [ sub-particules élémentaires ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

pesanteur

Votre corps n’est qu’une illusion de matière : la vérité sur l’origine de la masse

Nous avons tous appris que nous sommes faits de matière, constitués d’atomes et de particules élémentaires. Mais saviez-vous que la masse de votre corps ne vient pas réellement de la matière elle-même ? En réalité, elle provient presque entièrement d’une source inattendue : l’énergie. Cette idée, qui peut sembler étrange au premier abord, repose sur des principes fondamentaux de la physique moderne, notamment la célèbre équation d’Einstein E = mc².

Le champ de Higgs : un rôle surestimé ?

On entend souvent dire que la masse provient du champ de Higgs, une théorie développée dans les années 1960 pour expliquer pourquoi certaines particules subatomiques ont une masse. Ce champ, dont l’existence a été confirmée en 2012 avec la découverte du boson de Higgs au CERN, joue effectivement un rôle dans la masse des particules comme les électrons et les quarks.

Cependant, le champ de Higgs n’est pas la principale source de masse dans l’univers. En réalité, il ne représente qu’une infime partie de la masse totale des objets qui nous entourent, y compris celle de votre propre corps.

D’où vient réellement la masse ?

Pour comprendre l’origine véritable de la masse, il faut examiner la structure de la matière à un niveau plus profond. Votre corps est composé d’atomes, qui eux-mêmes sont constitués d’un noyau (fait de protons et de neutrons) entouré d’un nuage d’électrons. Or, si on pèse ces composants séparément, on découvre un fait surprenant : la masse des électrons est presque négligeable, et la somme des masses des quarks à l’intérieur des protons et des neutrons est bien inférieure à la masse totale de ces particules.

En réalité, environ 99 % de votre masse ne vient pas des quarks eux-mêmes, mais de l’énergie qui les maintient ensemble. Cette énergie provient d’une force fondamentale appelée interaction forte, qui relie les quarks entre eux à l’intérieur des protons et des neutrons.

Einstein avait raison : la masse, c’est de l’énergie

La clé pour comprendre cette énigme se trouve dans l’équation E = mc² d’Albert Einstein, qui établit que l’énergie et la masse sont interchangeables. À l’intérieur des protons et des neutrons, les quarks se déplacent à des vitesses extrêmement élevées, proches de celle de la lumière. Cette vitesse génère une énorme quantité d’énergie cinétique, et selon Einstein, cette énergie se convertit en masse.

De plus, l’interaction forte qui lie les quarks ensemble agit comme un ressort ultra-puissant. Plus la force est intense, plus l’énergie accumulée est grande, et cette énergie contribue également à la masse des protons et des neutrons.

En résumé, la masse que nous mesurons ne provient pas directement des particules de matière elles-mêmes, mais de l’énergie qui les maintient en place et les fait interagir.

Une vision révolutionnaire de la matière

Cette découverte bouleverse notre perception de la matière. Nous avons tendance à voir le monde en termes d’objets solides et tangibles, mais en réalité, la masse que nous percevons est une manifestation de l’énergie en mouvement à des échelles subatomiques.

Ce concept explique également pourquoi les scientifiques s’intéressent tant aux accélérateurs de particules comme le Grand Collisionneur de Hadrons (LHC) du CERN. En provoquant des collisions à très haute énergie entre des particules, ces machines permettent de recréer les conditions extrêmes qui ont façonné l’univers et d’étudier en détail l’origine de la masse.

D’un point de vue pratique, cette compréhension de la masse ne change pas notre quotidien : vous ne vous réveillerez pas demain matin en flottant dans les airs ! Cependant, elle ouvre des perspectives fascinantes sur la nature même de la réalité. Nous ne sommes pas faits de matière au sens classique du terme, mais plutôt d’énergie en perpétuel mouvement.

Cela remet aussi en question notre vision de ce qui est " réel ". Si la masse est simplement une forme d’énergie, alors notre perception de la solidité et du poids des objets est une illusion émergente, résultant de lois physiques fondamentales qui régissent l’univers à une échelle invisible à l’œil nu.




 

Auteur: Internet

Info: https://sciencepost.fr/, Brice Louvet, 6 avril 2025

[ chimère ] [ infra-monde ] [ source ]

 

Commentaires: 0

Ajouté à la BD par miguel

classique - quantique

Conversation avec A A sur les mystères les plus profonds de la physique quantique

A A est spécialiste de physique quantique. En 2022, il a obtenu le prix Nobel de physique pour ses travaux sur le phénomène d'" intrication quantique ", qui est au cœur de nombreuses technologies quantiques de nos jours.

Il a aussi plus largement contribué au domaine, souvent en explorant d'autres situations où les prédictions de la physique quantique sont très éloignées de notre intuition du monde physique. À cause de cette étrangeté, la physique quantique est souvent considérée comme inaccessible.

Dans cet entretien, sans prétendre tout expliquer de la mécanique quantique, Elsa Couderc et Benoît Tonson, chefs de rubrique Sciences et Technologies à The Conversation, espéraient transmettre ce qui fait le sel de la physique quantique et qui attise les passions encore aujourd'hui. Monsieur Aspect a bien voulu se prêter au jeu et revenir avec eux sur quelques étapes marquantes de sa carrière, les limites du monde quantique et l'essor des technologies quantiques aujourd'hui, entre recherche publique et recherche industrielle.

The Conversation : Pour aborder les travaux qui vous ont valu le prix Nobel, il faut revenir un peu en arrière, aux débuts de la théorie quantique. En effet, au tout début du XXe siècle, deux pères fondateurs de la physique quantique, Albert Einstein et Nils Bohr, s'écharpaient sur l'interprétation de la nouvelle théorie. Un des points de désaccord était lié au phénomène d'" intrication quantique ". L'intrication quantique, c'est le fait que deux particules séparées dans l'espace partagent des propriétés - à un point tel que l'on ne peut pas décrire complètement l'une sans décrire l'autre : il faut les décrire comme un tout. Einstein avait un problème avec cette idée, car cela signifiait pour lui que deux particules intriquées pourraient échanger de l'information instantanément sur de très grandes distances, c'est-à-dire plus rapidement que la vitesse de la lumière.

Avec vos expériences, vous avez montré qu'Einstein avait tort de ne pas admettre cette idée - ce que dit bien le titre de votre récent livre, paru chez Odile Jacob, Si Einstein avait su. Vous avez réalisé ces travaux à la fin des années 1970 et au début des années 1980, mais votre passion pour le sujet reste intacte. Pouvez-vous nous expliquer pourquoi ?

A A : Cette expérience m'a passionné parce qu'elle met vraiment en jeu la conception du monde d'Einstein.

Pour compléter le cours de l'histoire que vous soulignez, entre le débat Einstein-Bohr et mes travaux, il y a eu, en 1964, un physicien appelé John Bell. Bell a écrit des équations qui formalisent le désaccord historique entre Einstein et Bohr. À la suite des travaux de John Bell, John Clauser puis moi, puis d’autres encore, avons travaillé expérimentalement sur leur désaccord. J'ai eu l'honneur de montrer qu'Einstein avait tort dans une certaine mesure, mais j'ai mis ainsi en relief son immense mérite d'avoir mis le doigt sur une propriété extraordinaire de la physique quantique, l'intrication, dont les gens n'avaient probablement pas réalisé toute l'importance auparavant.

Mais j'ai beau avoir démontré qu'Einstein avait eu tort sur un sujet bien particulier, il reste pour moi un héros absolu ! Je l'admire énormément pour ses contributions à la physique quantique entre 1900 et 1925 et pour son article de 1935. Il faut ajouter que la clarté de tout ce qu'il a écrit est incroyable. John Bell l'avait aussi remarqué et avait résumé les choses ainsi :

Bohr était incohérent, peu clair, obscur à dessein, mais il avait raison. Einstein était cohérent, clair, terre-à-terre, mais il avait tort. (Bohr was inconsistent, unclear, willfully obscure, and right. Einstein was consistent, clear, down-to-earth, and wrong). " Propos de John Bell, rapportés par Graham Farmelo, le 11 juin 2010, dans le New York Times.

The Conversation : Vous avez fait d'autres travaux importants par la suite. Est-ce que vous pouvez nous parler de vos préférés ?

A A : D'une part, à la fin des années 1980, j'ai travaillé avec Claude Cohen-Tannoudji au développement d'une méthode pour refroidir les atomes - qui est sa spécialité.

Comme la température est associée à la vitesse d'agitation des atomes, pour les refroidir, il faut en fait les ralentir. Notre méthode s'appelle le refroidissement " en dessous du recul du photon " parce qu'on a réussi à ralentir l'agitation thermique par de toutes petites quantités - plus petites que ce que l'on croyait possible avec les lois de la physique quantique, de l'ordre du milliardième de degré. Ainsi, je suis heureux et fier d'avoir un peu contribué au prix Nobel de Claude Cohen-Tannoudji, comme mes amis Jean Dalibard et Christophe Salomon en ce qui concerne un autre volet de son travail.

Une autre première mondiale me tient à cœur. C'est un sujet dont nous avons eu l'idée avec mon collaborateur Philippe Bouyer, en sortant d'une conférence au début des années 2000. Les chercheurs en physique de la matière condensée cherchaient depuis la fin des années 1950 à observer directement un phénomène appelé " localisation d'Anderson ", qui concerne des électrons dans un matériau désordonné. Le conférencier avait dit quelque chose du style " Il serait intéressant de mettre des atomes dans un milieu désordonné " (un milieu désordonné est un endroit où règne le désordre, par exemple avec des obstacles irréguliers). Avec Philippe, on s'est regardés dans la voiture et on s'est dit : " Cette expérience, que nous avons développée au laboratoire, nous pourrions la modifier pour essayer d'observer la localisation d'Anderson des atomes dans un désordre optique ». En effet, le but du groupe de recherche d'optique atomique, que j'ai monté à l'Institut d'optique, est de faire avec des atomes ce que l'on sait faire avec les photons ou les électrons. Par exemple, le groupe - dont je ne fais plus partie bien sûr, je suis à la retraite - essaye aujourd'hui de refaire mon expérience sur l'intrication quantique avec des atomes.

Pour revenir à la localisation d'Anderson, grâce au potentiel que nous créons avec des lasers, nous avons réussi à coincer des atomes ultrafroids (un milliardième de degré) dans un paysage désordonné, ce qui nous a permis d'observer directement la localisation d'Anderson. Nous avons aussi pu photographier une " fonction d'onde atomique ", c'est-à-dire la " forme " d'un atome bloqué dans notre structure de lasers. Cet article est très cité par la communauté de la matière condensée qui s'intéresse à ce sujet - ils ont été tellement étonnés de voir directement une fonction d'onde photographiée ! La localisation d'Anderson est un phénomène quantique très subtil, et je suis particulièrement fier de notre travail sur ce sujet.

The Conversation : Vous avez beaucoup travaillé sur les propriétés de particules individuelles, sur le refroidissement par exemple, ou celles de duos de particules pour l'intrication. Que se passe-t-il quand il y a de nombreuses particules ? Plus spécifiquement, pourquoi les lois de la physique ne semblent-elles pas les mêmes à petite et grande échelle, alors que les grandes structures sont constituées de petites particules ?

A A : Je vais vous donner la réponse standard à cette question - mais je dois préciser qu'à mon avis, cette réponse standard ne fait que reculer le problème d'un cran.

Voici la réponse standard : il est clair que, quand on a beaucoup de particules, on n'observe plus les propriétés quantiques. Sinon, on pourrait observer le fameux chat de Schrödinger, qui est à la fois vivant et mort - et on ne l'observe pas. On dit que c'est à cause de la " décohérence ".

La décohérence, c'est le fait que, quand des objets quantiques sont en interaction avec le monde extérieur, leurs propriétés quantiques disparaissent plus ou moins vite, d'une façon plus ou moins nette, mais de façon inévitable. Une partie de l'information quantique va en quelque sorte se diluer dans le monde extérieur, et donc les particules n'ont plus toutes leurs caractéristiques quantiques. Or, on peut montrer théoriquement que plus vous avez un grand nombre de particules, plus il faut que les perturbations de l'extérieur soient petites pour conserver les caractéristiques quantiques. En d'autres termes, pour pouvoir observer des propriétés quantiques avec un grand nombre de particules, il faut donc les isoler davantage du monde extérieur.



C'est l'objectif de tous les gens qui essayent aujourd'hui de construire un ordinateur quantique, dans lequel il faut avoir des centaines, des milliers, des dizaines de milliers de ce que l'on appelle des " bits quantiques ". Ce sont des particules quantiques que l'on arrive à intriquer sans qu'elles interagissent avec le monde extérieur.

The Conversation : Pour faire cet ordinateur quantique, est-ce que la difficulté est purement technologique, celle d'isoler davantage du monde extérieur, ou bien est-ce qu'il y a une limite intrinsèque, un nombre de particules que l'on ne peut plus intriquer ? Où est la limite entre le monde quantique et le monde classique ?

A A : Aujourd'hui, on a réussi à observer le phénomène d'intrication avec 1 000 particules, peut-être quelques milliers. Mais, de l'autre côté, dans n'importe quel objet à notre échelle, il y a 1023 particules (1 suivi de 23 zéros, soit cent mille milliards de milliards). Il y a une vingtaine d'ordres de grandeur entre les deux échelles, c'est un intervalle absolument gigantesque. D'où la question : et s'il y avait une limite absolue entre les deux mondes ? Ce serait une nouvelle loi de la physique, mais pour l'instant, on ne connaît pas cette limite.

Découvrir une telle loi serait formidable, même si, selon où cette limite se place, elle pourrait balayer nos espoirs de développer des ordinateurs quantiques.

Il se trouve que je suis cofondateur d'une start-up française, Pasqal, qui essaye de construire un ordinateur quantique qui soit une machine facile à utiliser pour les utilisateurs. Du coup, j'ai très envie que l'ordinateur quantique tienne ses promesses. Mais, d'un autre côté, si, en essayant de développer cet ordinateur quantique, on trouve qu'il y a une limite fondamentale entre monde quantique et monde macroscopique, je serais très heureux en tant que physicien ! En fait, je pense que je serais gagnant dans les deux cas : soit l'ordinateur quantique marche, et je suis gagnant parce qu'il y a une application à des phénomènes que j'ai étudiés il y a longtemps ; soit on aura trouvé une nouvelle loi de la physique, et ce serait absolument extraordinaire.

The Conversation : Est-ce que vous pouvez nous en dire un petit peu plus sur cette idée de limite fondamentale entre monde quantique et monde classique ?

A A : Non, pour l'instant, on n'en sait pas plus que ce que je vous ai dit, c'est-à-dire que la décohérence est le fait qu'il y a une partie de l'" information quantique " qui fuite vers l'extérieur, et que cela détruit les superpositions quantiques. Et que plus le nombre de particules intriquées est grand et plus la décohérence va être nocive -- donc il faut isoler les systèmes de plus en plus si on veut qu'ils restent quantiques.

Cependant, il y aurait tout de même peut-être une échappatoire à la décohérence, dont rêvent les physiciens.

En effet, on décrit les particules quantiques grâce à leur " état " - c'est-à-dire ce qui décrit tous les aspects de la particule. Quand vous avez de nombreuses particules intriquées, vous imaginez bien que décrire l'ensemble de particules peut devenir un peu long. Pour un grand nombre de particules, l'" espace des états ", c'est-à-dire l'ensemble de toutes les possibilités, est d'une taille absolument extraordinaire. Il suffit d'avoir 200 ou 300 bits quantiques intriqués pour que le nombre d'états possibles soit plus grand que le nombre de particules dans l'univers. Dans cet espace des états, on n'est pas à l'abri d'un coup de chance, comme on dit, qui nous fournirait un endroit protégé de la décohérence - un petit sous-ensemble de l'espace des états qui ne souffrirait pas de la décohérence. Si cet endroit existe, quelques états particuliers dans l'immense espace des états ne seraient pas détruits par les interactions avec le monde extérieur.

Il y a des efforts sérieux en ce sens. Quand vous entendez parler de bit quantique " topologique " par exemple, c'est bien de cela qu'il s'agit. Mais jusqu'à présent, on tâtonne encore dans ce domaine.

The Conversation : Pourquoi parlez-vous de la décohérence comme de quelque chose qui cache le problème, qui le repousse d'un cran ?

A A : En physique, il y a des choses que l'on peut expliquer rigoureusement à partir des lois fondamentales. Mais il y en a d'autres, qui sont absolument fonctionnelles - on sait qu'elles décrivent correctement les phénomènes que l'on observe - mais qu'on ne sait pas encore les démontrer à partir des premiers principes. Il faut les ajouter " à la main ", comme on dit. C'est le cas de la décohérence, mais c'est aussi le cas du second principe de la thermodynamique. La décohérence est une théorie fonctionnelle pour expliquer la perte des caractéristiques quantiques, mais on ne sait pas encore complètement la démontrer en toute généralité.

The Conversation : Quelles sont les frontières de la recherche fondamentale en mécanique quantique aujourd'hui, les grandes questions que se posent les chercheuses et les chercheurs ?

A A:  Je vais d'abord préciser que cela fait douze ans que je ne dirige plus de groupe de recherche... Je m'intéresse à ces questionnements, mais je ne contribue plus à les formuler.

Cela étant, il me semble qu'il faut distinguer entre les problèmes à très long terme et ceux à plus court terme. Dans les problèmes à très long terme, on sait par exemple qu'il y a un problème entre la relativité générale et la physique quantique. C'est un problème de théoriciens, bien en dehors de mon domaine de compétences.

En revanche, dans les perspectives à plus court terme, et que je comprends, il y a les gens qui essayent d'observer le régime quantique avec des objets " macroscopiques ", en l'occurrence une membrane extrêmement tendue, qui vibre donc à une fréquence très élevée, et sur laquelle on commence à observer la quantification du mouvement oscillatoire. On touche là au problème que l'on a évoqué précédemment, celui de la limite entre monde quantique et monde macroscopique, puisqu'on commence à pouvoir étudier un objet qui est de dimension macroscopique et qui pourtant présente des phénomènes quantiques.

C'est une voie de recherche qui a l'avantage de ne pas être à l'échelle de décennies, mais plutôt à l'échelle des années, et qui peut nous aider à mieux comprendre cette limite entre le monde quantique et le monde classique. Pour cela, plusieurs systèmes sont envisagés, pas seulement les membranes, également des micromiroirs qui interagissent avec des photons.

The Conversation : Quelle taille font ces membranes ?

A A : Ces membranes peuvent être par exemple faites de matériaux 2D, un peu comme le graphène (réseau bidimensionnel d'atomes de carbone) : elles peuvent faire quelques millimètres de diamètre quand on les regarde par le dessus, mais seulement un atome d'épaisseur.

Ceci étant, ce n'est pas tant leur taille, mais leur fréquence de vibration qui est importante ici - c'est ça qui leur permet d'exhiber des propriétés quantiques. Les fréquences de vibration sont tellement élevées, comme quand on tend une corde de guitare, que l'on atteint des gammes de millions de hertz, soit des millions de vibrations par seconde. Quand le " quantum de vibration " (défini par Einstein en 1905 comme la fréquence multipliée par la constante de Planck) devient comparable à l'énergie thermique typique, c'est-à-dire quand la membrane vibre assez haut, l'agitation thermique vous gêne moins et vous pouvez observer des effets quantiques, à condition de refroidir suffisamment le système.

The Conversation : Y a-t-il d'autres avancées que vous suivez particulièrement et qui repoussent les limites fondamentales de la physique quantique ?

A A : Il faut bien sûr parler de tous ces efforts pour réaliser l'ordinateur quantique, qui suivent des voies toutes très intéressantes d'un point de vue de la physique fondamentale.

Il y a les voies qui utilisent des atomes neutres, ou des ions, ou des photons, pour fabriquer des bits quantiques. Ce sont des objets quantiques qui nous sont donnés par la nature. Par ailleurs, en matière condensée, que je connais personnellement moins bien, il y a des bits quantiques artificiels, basés sur des circuits supraconducteurs. Les matériaux supraconducteurs sont des matériaux bien particuliers, dans lesquels l'électricité peut se propager sans résistance - encore un phénomène quantique. Certains circuits, conçus spécialement, présentent des états quantiques spécifiques que l'on peut exploiter comme bits quantiques. À l'heure actuelle, on ne sait rendre des matériaux supraconducteurs qu'à très basse température.

L'avantage des objets quantiques naturels comme les photons, les ions et les atomes, c'est qu'ils sont parfaits par définition : tous les atomes de rubidium sont les mêmes, tous les photons de même fréquence sont les mêmes. Pour un expérimentateur, c'est une bénédiction.

Dans le domaine de la matière condensée, au contraire, les scientifiques fabriquent des circuits quantiques de façon artificielle, avec des supraconducteurs. Il faut les réaliser suffisamment bien pour que les circuits soient vraiment quantiques, tous identiques et avec les mêmes performances.

Et, en fait, quand on regarde l'histoire de la physique, on s'aperçoit qu'il y a des phénomènes qui sont démontrés avec des objets quantiques naturels. À partir du moment où on trouve que le phénomène est suffisamment intéressant, en particulier pour des applications, les ingénieurs arrivent progressivement à développer des systèmes artificiels qui permettent de reproduire le phénomène d'une façon beaucoup plus simple ou contrôlée. C'est pour cela je trouve que c'est intéressant de commencer par essayer l'ordinateur quantique avec des objets quantiques naturels, comme le fait Antoine Browaeys ici, à l'Institut d'optique, ou la start-up Quandela avec des photons.

The Conversation : On observe un fort engouement pour les technologies quantiques, dont certaines sont déjà opérationnelles, par exemple les gravimètres quantiques ou les simulateurs quantiques : quels sont les " avantages quantiques " déjà démontrés par les technologies opérationnelles aujourd'hui ?

A A : En ce qui concerne les gravimètres, c'est-à-dire les appareils qui mesurent la gravitation, la performance des gravimètres quantiques n'est pas meilleure que le meilleur des gravimètres classiques... sauf qu'au lieu de peser une tonne et d'avoir besoin de le déplacer avec une grue là où vous voulez aller mesurer la gravitation, c'est un appareil qui fait quelques dizaines de kilos et on peut le déplacer facilement sur les flancs d'un volcan pour savoir si le magma a des mouvements soudains, ce qui peut être un signe précurseur d'éruption. Dans ce cas-là, les performances ultimes des gravimètres quantiques ne sont pas meilleures que les performances ultimes des meilleurs systèmes classiques, mais la miniaturisation apporte des avantages certains.

The Conversation : Et pour l'ordinateur quantique ?

A A : En ce qui concerne l'ordinateur quantique, il faut d'abord définir le terme " avantage quantique ". Lorsqu'on vous annonce un avantage quantique obtenu en résolvant un problème que personne ne s'était jamais posé, on peut douter de l'intérêt. Par exemple, si vous faites passer un faisceau laser à travers un verre de lait, la figure lumineuse qui est derrière est une figure extrêmement compliquée à calculer. Ce calcul prendrait des années avec un ordinateur classique. Est-ce que je vais dire pour autant que mon verre de lait est un calculateur extraordinaire parce qu'il me donne le résultat d'un calcul infaisable ? Bien sûr que non. Certaines annonces d'avantage quantique relèvent d'une présentation analogue.

Par contre, ici à l'Institut d'optique, Antoine Browaeys a un simulateur quantique qui a répondu à un problème posé depuis longtemps : un problème de physiciens appelé le " problème d'Ising ". Il s'agit de trouver la configuration d'énergie minimale d'un ensemble de particules disposées régulièrement sur un réseau. Avec les ordinateurs classiques, on peut répondre au problème avec 80 particules maximum, je dirais. Tandis qu'avec son simulateur quantique, Antoine Browaeys a résolu le problème avec 300 particules. Il a incontestablement l'" avantage quantique ".

Il faut bien voir cependant que les physiciens qui étudiaient le problème avec des ordinateurs classiques ont été stimulés ! Ils ont alors développé des approximations qui permettent d'approximer le résultat à 300 particules, mais ils n'étaient pas certains que leurs approximations étaient correctes. Quant à Browaeys, il avait trouvé un résultat, mais il n'avait rien pour le vérifier. Quand ils ont constaté qu'ils ont trouvé la même chose, ils étaient tous contents. C'est une compétition saine -- c'est l'essence de la méthode scientifique, la comparaison de résultats obtenus par diverses méthodes.

J'en profite pour dire qu'il y a une deuxième acception du terme " avantage quantique ". Elle se situe sur le plan énergétique, c'est-à-dire qu'on a de bonnes raisons de penser qu'on pourra faire, avec des ordinateurs quantiques, des calculs accessibles aux ordinateurs classiques, mais en dépensant moins d'énergie. Dans le contexte actuel de crise de l'énergie, c'est un avantage quantique qui mérite d'être creusé. On sait ce qu'il faudrait faire en principe pour exploiter cet avantage énergétique : il faudrait augmenter la cadence des calculs : passer d'une opération toutes les secondes ou dixièmes de seconde à mille par seconde. C'est vraiment un problème technologique qui paraît surmontable.

En somme, l'avantage quantique, ça peut être soit la possibilité de faire des calculs inaccessibles aux ordinateurs classiques, soit la possibilité de répondre à des problèmes auxquels on pourrait répondre avec un ordinateur classique, mais en dépensant moins d'énergie.

The Conversation : Certaines technologies quantiques ne sont pas encore suffisamment matures pour être largement utilisables - par exemple l'ordinateur quantique. Pourtant, de grandes entreprises annoncent ces derniers mois des avancées notables : Google en décembre 2024 et Amazon Web Services en février 2025 sur les codes correcteurs d'erreurs, Microsoft en février aussi avec des qubits " topologiques ". Quel regard portez-vous sur cette arrivée des géants du numérique dans le domaine ?

A A : L'arrivée des géants du numérique, c'est tout simplement parce qu'ils ont énormément d'argent et qu'ils veulent ne pas rater une éventuelle révolution. Comme nous tous, ils ne savent pas si la révolution de l'ordinateur quantique aura lieu ou non. Mais si elle a lieu, ils veulent être dans la course.

En ce qui concerne les annonces, je veux être très clair en ce qui concerne celle de Microsoft au sujet des bits quantiques " topologiques ". Cette annonce est faite par un communiqué de presse des services de communication de Microsoft, et elle n'est vraiment pas étayée par l'article publié par les chercheurs de Microsoft dans Nature, qui est une revue scientifique avec évaluation par les pairs - c'est-à-dire des chercheurs qui savent de quoi il en retourne et qui ne laissent pas publier des affirmations non justifiées.

Le communiqué de presse prétend qu'ils ont observé les fameux " fermions de Majorana " - un candidat au poste de bit quantique " topologique ", c'est-à-dire dans le fameux sous-ensemble de l'espace des états qui serait protégé de la décohérence.

De leur côté, les chercheurs, dans l'article, disent qu'ils ont observé un phénomène qui pourrait - qui pourrait ! - être interprété, peut-être, par des fermions de Majorana. C'est extrêmement différent. De plus, le communiqué de presse évoque déjà le fait qu'ils vont avoir une puce dans laquelle il y aura un million de fermions de Majorana, alors qu'on n'est même pas sûr d'en avoir un seul. Je vous laisse apprécier !

The Conversation : Cette implication de la recherche privée risque-t-elle de déplacer l'engouement de la recherche publique vers d'autres sujets ? Quel regard portez-vous sur l'équilibre entre recherche publique et recherche privée ?

A A : Il y a des choses qui sont à la mode à un moment, puis qu'on oublie. Mais c'est normal, car il y a une forme de sélection naturelle des idées dans la recherche. Par exemple, en ce qui concerne les bits quantiques, cela fait quinze ans que la Commission européenne me demande sur quel type de bit quantique focaliser les efforts - on les a répertoriés tout à l'heure : photons, atomes, ions, circuits supraconducteurs, silicium... Je leur réponds, encore aujourd'hui, que je suis incapable de le leur dire. C'est le rôle de la puissance publique de financer le long terme.

Il faut laisser les chercheurs avancer et, à un moment donné, il y aura probablement une ou deux pistes qui se révéleront meilleures que les autres. Et bien sûr, on ralentira la recherche sur les autres. C'est ça, la sélection naturelle des idées.

The Conversation : Les acteurs privés ont d'ailleurs tous misé sur des candidats différents pour leurs bits quantiques...

A A : C'est vrai, mais une des caractéristiques du privé, c'est d'être très réactif. Donc le jour où ils réaliseront que leur choix de bit quantique n'est pas le bon, ils vont instantanément arrêter et passer à un choix qui s'est révélé meilleur. D'ailleurs, sur le plan de l'ingénierie, je dois dire que ce qui se fait dans le privé est tout à fait remarquable du point de vue de la réactivité. La recherche académique est meilleure pour laisser mûrir les idées, ce qui est une phase indispensable.

Il faut reconnaître que ces acteurs privés mettent beaucoup plus d'argent que le public, en revanche, ils n'ont pas le long terme devant eux. Or, il ne suffit pas de déverser des sommes énormes d'argent pour accélérer la recherche.

La recherche demande aussi une maturation des idées ; et ce n'est pas parce que vous avez dix fois plus d'argent que vous allez dix fois plus vite. Il y a à la fois des évolutions dans les idées et, parfois aussi, des évolutions technologiques inattendues. J'ai pu observer ces effets de maturation et de paliers lors de ma longue expérience d'évaluation des systèmes de recherche en France, en Allemagne et dans d'autres pays.

De ce point de vue, il est primordial que la recherche publique conserve des financements non fléchés, qu'on appelle " blancs ". Je pense qu'il n'est pas illégitime qu'un État qui met beaucoup d'argent dans la recherche signale que, sur tel et tel sujet, il aimerait que les gens travaillent et qu'il mette de l'argent là-dedans. Le point essentiel, c'est de laisser la place à d'authentiques sujets blancs, proposés par les chercheurs alors qu'ils ne figuraient dans aucun programme. C'est grâce à un projet non fléché que nous avons pu observer la localisation d'Anderson, par exemple. On ne peut pas tout prévoir sur le long terme.

Et puis il faut aussi que l'information circule pour que d'autres chercheurs s'emparent des avancées, et puissent les adopter. D'où l'importance des publications, qui sont l'occasion de partager ses résultats avec les autres chercheurs ; et d'où les réserves que l'on doit avoir sur la confidentialité, même s'il est clair que cette confidentialité est nécessaire dans certains domaines spécifiques.

Auteur: Aspect Alain

Info: https://theconversation.com/, mars 2025

[ niveaux vibratoires ] [ corrélé - décorrélé ] [ capitalisme ] [ consumérisme ] [ infra-monde ] [ nouveau paradigme ] [ génies ] [ approches différentes ] [ méthodes distinctes ]

 

Commentaires: 0

Ajouté à la BD par miguel