Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 3
Temps de recherche: 0.0237s

dichotomie

La représentation d'un Dieu, blanc surdimensionné avec une barbe abondante, qui siège dans le ciel et supervise les évolutions de chaque moineau est grotesque. D'un autre côté si par 'Dieu', on entend l'ensemble des lois physiques qui régissent l'univers, alors il est clair qu'existe un Eternel de ce genre. Mais ce Dieu est émotionnellement insatisfaisant... Prier en s'adressant à une loi de la gravitation n'a aucun sens.

Auteur: Sagan Carl

Info:

[ dualité ] [ religiosité stéréo ] [ spiritualité vs rationalisme ]

 

Commentaires: 0

Ajouté à la BD par miguel

dichotomie

Un nouvel opus magnum postule l'existence d'un lien mathématique caché, semblable à la connexion entre l'électricité et le magnétisme.

En 2018, alors qu'il s'apprêtait à recevoir la médaille Fields, la plus haute distinction en mathématiques, Akshay Venkatesh avait un morceau de papier dans sa poche. Il y avait inscrit un tableau d'expressions mathématiques qui, depuis des siècles, jouent un rôle clé dans la théorie des nombres.

Bien que ces expressions aient occupé une place prépondérante dans les recherches de Venkatesh au cours de la dernière décennie, il les gardait sur lui non pas comme un souvenir de ce qu'il avait accompli, mais comme un rappel de quelque chose qu'il ne comprenait toujours pas.

Les colonnes du tableau étaient remplies d'expressions mathématiques à l'allure énigmatique : À l'extrême gauche se trouvaient des objets appelés périodes, et à droite, des objets appelés fonctions L, qui pourraient être la clé pour répondre à certaines des questions les plus importantes des mathématiques modernes. Le tableau suggérait une sorte de relation entre les deux. Dans un livre publié en 2012 avec Yiannis Sakellaridis, de l'université Johns Hopkins, Venkatesh avait trouvé un sens à cette relation : Si on leur donne une période, ils peuvent déterminer s'il existe une fonction L associée.

Mais ils ne pouvaient pas encore comprendre la relation inverse. Il était impossible de prédire si une fonction L donnée avait une période correspondante. Lorsqu'ils ont examiné les fonctions L, ils ont surtout constaté un certain désordre.

C'est pourquoi Venkatesh a gardé le papier dans sa poche. Il espérait que s'il fixait la liste suffisamment longtemps, les traits communs de cette collection apparemment aléatoire de fonctions L lui apparaîtraient clairement. Au bout d'un an, ce n'était pas le cas.

"Je n'arrivais pas à comprendre le principe qui sous-tendait ce tableau", a-t-il déclaré.

2018 fut une année importante pour Venkatesh à plus d'un titre. En plus de recevoir la médaille Fields, il a également quitté l'université de Stanford, où il se trouvait depuis une dizaine d'années, pour rejoindre l'Institute for Advanced Study à Princeton, dans le New Jersey.

Sakellaridis et lui ont également commencé à discuter avec David Ben-Zvi, un mathématicien de l'université du Texas, à Austin, qui passait le semestre à l'institut. Ben-Zvi avait construit sa carrière dans un domaine parallèle des mathématiques, en étudiant le même type de questions sur les nombres que Sakellaridis et Venkatesh, mais d'un point de vue géométrique. Lorsqu'il a entendu Venkatesh parler de cette table mystérieuse qu'il emportait partout avec lui, Ben-Zvi a presque immédiatement commencé à voir une nouvelle façon de faire communiquer les périodes et les fonctions L entre elles.

Ce moment de reconnaissance a été à l'origine d'une collaboration de plusieurs années qui s'est concrétisée en juillet dernier, lorsque Ben-Zvi, Sakellaridis et Venkatesh ont publié un manuscrit de 451 pages. L'article crée une traduction dans les deux sens entre les périodes et les fonctions L en refondant les périodes et les fonctions L en termes d'une paire d'espaces géométriques utilisés pour étudier des questions fondamentales en physique.

Ce faisant, il réalise un rêve de longue date dans le cadre d'une vaste initiative de recherche en mathématiques appelée "programme Langlands". Les mathématiciens qui travaillent sur des questions dans le cadre de ce programme cherchent à jeter des ponts entre des domaines disparates pour montrer comment des formes avancées de calcul (d'où proviennent les périodes) peuvent être utilisées pour répondre à des questions ouvertes fondamentales en théorie des nombres (d'où proviennent les fonctions L), ou comment la géométrie peut être utilisée pour répondre à des questions fondamentales en arithmétique.

Ils espèrent qu'une fois ces ponts établis, les techniques pourront être portées d'un domaine mathématique à un autre afin de répondre à des questions importantes qui semblent insolubles dans leur propre domaine.

Le nouvel article est l'un des premiers à relier les aspects géométriques et arithmétiques du programme, qui, pendant des décennies, ont progressé de manière largement isolée. En créant ce lien et en élargissant effectivement le champ d'application du programme Langlands tel qu'il a été conçu à l'origine, le nouvel article fournit un cadre conceptuel unique pour une multitude de connexions mathématiques.

"Il unifie un grand nombre de phénomènes disparates, ce qui réjouit toujours les mathématiciens", a déclaré Minhyong Kim, directeur du Centre international des sciences mathématiques d'Édimbourg, en Écosse.

Connecter eulement  

Le programme Langlands a été lancé par Robert Langlands, aujourd'hui professeur émérite à l'Institute for Advanced Study. Il a débuté en 1967 par une lettre manuscrite de 17 pages adressée par Langlands, alors jeune professeur à l'université de Princeton, à Andre Weil, l'un des mathématiciens les plus connus au monde. Langlands proposait d'associer des objets importants du calcul, appelés formes automorphes, à des objets de l'algèbre, appelés groupes de Galois. Les formes automorphes sont une généralisation des fonctions périodiques telles que le sinus en trigonométrie, dont les sorties se répètent à l'infini lorsque les entrées augmentent. Les groupes de Galois sont des objets mathématiques qui décrivent comment des entités appelées champs (comme les nombres réels ou rationnels) changent lorsqu'on leur ajoute de nouveaux éléments.

Les paires comme celle entre les formes automorphes et les groupes de Galois sont appelées dualités. Elles suggèrent que différentes classes d'objets se reflètent l'une l'autre, ce qui permet aux mathématiciens d'étudier l'une en fonction de l'autre.

Des générations de mathématiciens se sont efforcées de prouver l'existence de la dualité supposée de Langlands. Bien qu'ils n'aient réussi à l'établir que pour des cas limités, même ces cas limités ont souvent donné des résultats spectaculaires. Par exemple, en 1994, lorsque Andrew Wiles a démontré que la dualité proposée par Langlands était valable pour une classe particulière d'exemples, il a prouvé le dernier théorème de Fermat, l'un des résultats les plus célèbres de l'histoire des mathématiques.

En poursuivant le programme de Langlands, les mathématiciens l'ont également élargi dans de nombreuses directions.

L'une de ces directions a été l'étude de dualités entre des objets arithmétiques apparentés, mais distincts, de ceux qui intéressaient Langlands. Dans leur livre de 2012, Sakellaridis et Venkatesh ont étudié une dualité entre les périodes, qui sont étroitement liées aux formes automorphes, et les fonctions L, qui sont des sommes infinies attachées aux groupes de Galois. D'un point de vue mathématique, les périodes et les L-fonctions sont des objets d'espèces totalement différentes, sans traits communs évidents.

Les périodes sont devenues des objets d'intérêt mathématique dans les travaux d'Erich Hecke dans les années 1930.

Les fonctions L sont des sommes infinies utilisées depuis les travaux de Leonhard Euler au milieu du 18e siècle pour étudier des questions fondamentales sur les nombres. La fonction L la plus célèbre, la fonction zêta de Riemann, est au cœur de l'hypothèse de Riemann, qui peut être considérée comme une prédiction sur la répartition des nombres premiers. L'hypothèse de Riemann est sans doute le plus important problème non résolu en mathématiques.

Langlands était conscient des liens possibles entre les fonctions L et les périodes, mais il les considérait comme une question secondaire dans son projet de relier différents domaines des mathématiques.

"Dans un article, [Langlands] considérait que l'étude des périodes et des fonctions L ne valait pas la peine d'être étudiée", a déclaré M. Sakellaridis.

Bienvenue dans la machine

Bien que Robert Langlands n'ait pas insisté sur le lien entre les périodes et les fonctions L, Sakellaridis et Venkatesh les considéraient comme essentiels pour élargir et approfondir les liens entre des domaines mathématiques apparemment éloignés, comme l'avait proposé Langlands.

Dans leur livre de 2012, ils ont développé une sorte de machine qui prend une période en entrée, effectue un long calcul et produit une fonction L. Cependant, toutes les périodes ne produisent pas des L-fonctions correspondantes, et la principale avancée théorique de leur livre était de comprendre lesquelles le font. (Ce travail s'appuie sur des travaux antérieurs d'Atsushi Ichino et de Tamotsu Ikeda à l'université de Kyoto).

Mais leur approche avait deux limites. Premièrement, elle n'explique pas pourquoi une période donnée produit une fonction L donnée. La machine qui transforme l'une en l'autre était une boîte noire. C'était comme s'ils avaient construit un distributeur automatique qui produisait souvent de manière fiable quelque chose à manger chaque fois que vous mettiez de l'argent, sauf qu'il était impossible de savoir ce que ce serait à l'avance, ou si la machine mangerait l'argent sans distribuer d'en-cas.

Dans tous les cas, vous deviez déposer votre argent - votre période - puis "faire un long calcul et voir quelle fonction L vous obteniez parmi un zoo de fonctions", a déclaré M. Venkatesh.

La deuxième chose qu'ils n'ont pas réussi à faire dans leur livre, c'est de comprendre quelles fonctions L ont des périodes associées. Certaines en ont. D'autres non. Ils n'ont pas réussi à comprendre pourquoi.

Ils ont continué à travailler après la publication du livre, en essayant de comprendre pourquoi la connexion fonctionnait et comment faire fonctionner la machine dans les deux sens - non seulement en obtenant une fonction L à partir d'une période, mais aussi dans l'autre sens.

En d'autres termes, ils voulaient savoir que s'ils mettaient 1,50 $ dans le distributeur automatique, cela signifiait qu'ils allaient recevoir un sachet de Cheetos. De plus, ils voulaient pouvoir dire que s'ils tenaient un sachet de Cheetos, cela signifiait qu'ils avaient mis 1,50 $ dans le distributeur automatique.

Parce qu'elles relient des objets qui, à première vue, n'ont rien en commun, les dualités sont puissantes. Vous pourriez fixer un alignement d'objets mathématiques pendant une éternité sans percevoir la correspondance entre les fonctions L et les périodes.

"La manière dont elles sont définies et données, cette période et cette fonction L, n'a rien d'évident", explique Wee Teck Gan, de l'université nationale de Singapour.

Pour traduire des choses superficiellement incommensurables, il faut trouver un terrain d'entente. L'un des moyens d'y parvenir pour des objets tels que les fonctions L et les périodes, qui trouvent leur origine dans la théorie des nombres, est de les associer à des objets géométriques.

Pour prendre un exemple ludique, imaginez que vous avez un triangle. Mesurez la longueur de chaque côté et vous obtiendrez un ensemble de nombres qui vous indiquera comment écrire une fonction L. Prenez un autre triangle et, au lieu de mesurer les longueurs, regardez les trois angles intérieurs - vous pouvez utiliser ces angles pour définir une période. Ainsi, au lieu de comparer directement les fonctions L et les périodes, vous pouvez comparer les triangles qui leur sont associés. On peut dire que les triangles "indexent" les L-fonctions et les périodes - si une période correspond à un triangle avec certains angles, alors les longueurs de ce triangle correspondent à une L-fonction correspondante.

Si une période correspond à un triangle avec certains angles, les longueurs de ce triangle correspondent à une fonction L. "Cette période et cette fonction L, il n'y a pas de relation évidente dans la façon dont elles vous sont données. L'idée était donc que si vous pouviez comprendre chacune d'entre elles d'une autre manière, d'une manière différente, vous pourriez découvrir qu'elles sont très comparables", a déclaré M. Gan.

Dans leur ouvrage de 2012, Sakellaridis et Venkatesh ont réalisé une partie de cette traduction. Ils ont trouvé un moyen satisfaisant d'indexer des périodes en utilisant un certain type d'objet géométrique. Mais ils n'ont pas pu trouver une façon similaire de penser aux fonctions L.

Ben-Zvi pensait pouvoir le faire.

Le double marteau de Maxwell

Alors que les travaux de Sakellaridis et Venkatesh se situaient légèrement à côté de la vision de Langlands, Ben-Zvi travaillait dans un domaine des mathématiques qui se situait dans un univers totalement différent - une version géométrique du programme de Langlands.

Le programme géométrique de Langlands a débuté au début des années 1980, lorsque Vladimir Drinfeld et Alexander Beilinson ont suggéré une sorte de dualité de second ordre. Drinfeld et Beilinson ont proposé que la dualité de Langlands entre les groupes de Galois et les formes automorphes puisse être interprétée comme une dualité analogue entre deux types d'objets géométriques. Mais lorsque Ben-Zvi a commencé à travailler dans le programme géométrique de Langlands en tant qu'étudiant diplômé à l'université de Harvard dans les années 1990, le lien entre le programme géométrique et le programme original de Langlands était quelque peu ambitieux.

"Lorsque le programme géométrique de Langlands a été introduit pour la première fois, il s'agissait d'une séquence d'étapes psychologiques pour passer du programme original de Langlands à cet énoncé géométrique qui semblait être un tout autre genre d'animal", a déclaré M. Ben-Zvi.

En 2018, lorsque M. Ben-Zvi a passé une année sabbatique à l'Institute for Advanced Study, les deux parties se sont rapprochées, notamment dans les travaux publiés la même année par Vincent Lafforgue, chercheur à l'Institut Fourier de Grenoble. Pourtant, M. Ben-Zvi prévoyait d'utiliser son séjour sabbatique de 2018 à l'IAS pour effectuer des recherches sur l'aspect géométrique du programme Langlands. Son plan a été perturbé lorsqu'il est allé écouter un exposé de Venkatesh.

"Mon fils et la fille d'Akshay étaient des camarades de jeu, et nous étions amis sur le plan social, et j'ai pensé que je devrais assister à certaines des conférences qu'Akshay a données au début du semestre", a déclaré Ben-Zvi.

Lors de l'une de ces premières conférences, Venkatesh a expliqué qu'il fallait trouver un type d'objet géométrique capable d'indexer à la fois les périodes et les fonctions L, et il a décrit certains de ses récents progrès dans cette direction. Il s'agissait d'essayer d'utiliser des espaces géométriques issus d'un domaine des mathématiques appelé géométrie symplectique, que Ben-Zvi connaissait bien pour avoir travaillé dans le cadre du programme géométrique de Langlands.

"Akshay et Yiannis ont poussé dans une direction où ils ont commencé à voir des choses dans la géométrie symplectique, et cela m'a fait penser à plusieurs choses", a déclaré M. Ben-Zvi.

L'étape suivante est venue de la physique.

Pendant des décennies, les physiciens et les mathématiciens ont utilisé les dualités pour trouver de nouvelles descriptions du fonctionnement des forces de la nature. Le premier exemple, et le plus célèbre, est celui des équations de Maxwell, écrites pour la première fois à la fin du XIXe siècle, qui relient les champs électriques et magnétiques. Ces équations décrivent comment un champ électrique changeant crée un champ magnétique, et comment un champ magnétique changeant crée à son tour un champ électrique. Ils peuvent être décrits conjointement comme un champ électromagnétique unique. Dans le vide, "ces équations présentent une merveilleuse symétrie", a déclaré M. Ben-Zvi. Mathématiquement, l'électricité et le magnétisme peuvent changer de place sans modifier le comportement du champ électromagnétique commun.

Parfois, les chercheurs s'inspirent de la physique pour prouver des résultats purement mathématiques. Par exemple, dans un article de 2008, les physiciens Davide Gaiotto et Edward Witten ont montré comment les espaces géométriques liés aux théories quantiques des champs de l'électromagnétisme s'intègrent dans le programme géométrique de Langlands. Ces espaces sont présentés par paires, une pour chaque côté de la dualité électromagnétique : les espaces G hamiltoniens et leur dual : Les espaces Ğ hamiltoniens (prononcés espaces G-hat).

Ben-Zvi avait pris connaissance de l'article de Gaiotto-Witten lors de sa publication, et il avait utilisé le cadre physique qu'il fournissait pour réfléchir à des questions relatives à la géométrie de Langlands. Mais ce travail - sans parler de l'article de physique qui l'a motivé - n'avait aucun lien avec le programme original de Langlands.

Jusqu'à ce que Ben-Zvi se retrouve dans le public de l'IAS en train d'écouter Venkatesh. Il a entendu Venkatesh expliquer qu'à la suite de leur livre de 2012, lui et Sakellaridis en étaient venus à penser que la bonne façon géométrique d'envisager les périodes était en termes d'espaces Hamiltoniens G. Mais Venkatesh a admis qu'ils ne savaient pas quel type d'objet géométrique associer aux L-fonctions. 

Cela a mis la puce à l'oreille de Ben-Zvi. Une fois que Sakellaridis et Venkatesh ont relié les périodes aux espaces G hamiltoniens, les objets géométriques duaux des fonctions L sont devenus immédiatement clairs : les espaces Ğ dont Gaiotto et Witten avaient dit qu'ils étaient les duaux des espaces G. Pour Ben-Zvi, toutes ces dualités, entre l'arithmétique, la géométrie et la physique, semblaient converger. Même s'il ne comprenait pas toute la théorie des nombres, il était convaincu que tout cela faisait partie d'une "grande et belle image".

To G or Not to Ğ

Au printemps 2018, Ben-Zvi, Sakellaridis et Venkatesh se sont rencontrés régulièrement au restaurant du campus de l'Institute for Advanced Study ; pendant quelques mois, ils ont cherché à savoir comment interpréter les données extraites des L-fonctions comme une recette pour construire des Ğ-espaces hamiltoniens. Dans l'image qu'ils ont établie, la dualité entre les périodes et les fonctions L se traduit par une dualité géométrique qui prend tout son sens dans le programme géométrique de Langlands et trouve son origine dans la dualité entre l'électricité et le magnétisme. La physique et l'arithmétique deviennent des échos l'une de l'autre, d'une manière qui se répercute sur l'ensemble du programme de Langlands.

"On pourrait dire que le cadre original de Langlands est maintenant un cas particulier de ce nouveau cadre", a déclaré M. Gan.

En unifiant des phénomènes disparates, les trois mathématiciens ont apporté une partie de l'ordre intrinsèque à la relation entre l'électricité et le magnétisme à la relation entre les périodes et les fonctions L.

"L'interprétation physique de la correspondance géométrique de Langlands la rend beaucoup plus naturelle ; elle s'inscrit dans cette image générale des dualités", a déclaré Kim. "D'une certaine manière, ce que [ce nouveau travail] fait est un moyen d'interpréter la correspondance arithmétique en utilisant le même type de langage.

Le travail a ses limites. Les trois mathématiciens prouvent en particulier  la dualité entre les périodes et les fonctions L sur des systèmes de nombres qui apparaissent en géométrie, appelés champs de fonctions, plutôt que sur des champs de nombres - comme les nombres réels - qui sont le véritable domaine d'application du programme de Langlands.

"L'image de base est censée s'appliquer aux corps de nombres. Je pense que tout cela sera finalement développé pour les corps de nombres", a déclaré M. Venkatesh.

Même sur les champs de fonctions, le travail met de l'ordre dans la relation entre les périodes et les fonctions L. Pendant les mois où Venkatesh a transporté un imprimé dans sa poche, lui et Sakellaridis n'avaient aucune idée de la raison pour laquelle ces fonctions L devraient être celles qui sont associées aux périodes. Aujourd'hui, la relation est logique dans les deux sens. Ils peuvent la traduire librement en utilisant un langage commun.

"J'ai connu toutes ces périodes et j'ai soudain appris que je pouvais retourner chacune d'entre elles et qu'elle se transformait en une autre que je connaissais également. C'est une prise de conscience très choquante", a déclaré M. Venkatesh.



 

Auteur: Internet

Info: https://www.quantamagazine.org. Kevin Hartnett, contributing Writer, October 12, 2023 https://www.quantamagazine.org/echoes-of-electromagnetism-found-in-number-theory-20231012/?mc_cid=cc4eb576af&mc_eid=78bedba296

[ fonction L p-adique ] [ fonction périodique ]

 

Commentaires: 0

Ajouté à la BD par miguel

dichotomie

De quoi l'espace-temps est-il réellement fait ?

L'espace-temps pourrait émerger d'une réalité plus fondamentale. La découverte de cette réalité pourrait débloquer l'objectif le plus urgent de la physique

Natalie Paquette passe son temps à réfléchir à la manière de faire croître une dimension supplémentaire. Elle commence par de petits cercles, dispersés en tout point de l'espace et du temps - une dimension en forme de boucle, qui se referme sur elle-même. Puis on rétrécit ces cercles, de plus en plus petits, en resserrant la boucle, jusqu'à ce qu'une curieuse transformation se produise : la dimension cesse de sembler minuscule et devient énorme, comme lorsqu'on réalise que quelque chose qui semble petit et proche est en fait énorme et distant. "Nous réduisons une direction spatiale", explique Paquette. "Mais lorsque nous essayons de la rétrécir au-delà d'un certain point, une nouvelle et grande direction spatiale émerge à la place."

Paquette, physicien théoricien à l'université de Washington, n'est pas le seul à penser à cette étrange sorte de transmutation dimensionnelle. Un nombre croissant de physiciens, travaillant dans différents domaines de la discipline avec des approches différentes, convergent de plus en plus vers une idée profonde : l'espace - et peut-être même le temps - n'est pas fondamental. Au contraire, l'espace et le temps pourraient être émergents : ils pourraient découler de la structure et du comportement de composants plus fondamentaux de la nature. Au niveau le plus profond de la réalité, des questions comme "Où ?" et "Quand ?" n'ont peut-être aucune réponse. "La physique nous donne de nombreux indices selon lesquels l'espace-temps tel que nous le concevons n'est pas la chose fondamentale", déclare M. Paquette.

Ces notions radicales proviennent des derniers rebondissements de la chasse à la théorie de la gravité quantique, qui dure depuis un siècle. La meilleure théorie des physiciens sur la gravité est la relativité générale, la célèbre conception d'Albert Einstein sur la façon dont la matière déforme l'espace et le temps. Leur meilleure théorie sur tout le reste est la physique quantique, qui est d'une précision étonnante en ce qui concerne les propriétés de la matière, de l'énergie et des particules subatomiques. Les deux théories ont facilement passé tous les tests que les physiciens ont pu concevoir au cours du siècle dernier. On pourrait penser qu'en les réunissant, on obtiendrait une "théorie du tout".

Mais les deux théories ne s'entendent pas bien. Demandez à la relativité générale ce qui se passe dans le contexte de la physique quantique, et vous obtiendrez des réponses contradictoires, avec des infinis indomptés se déchaînant sur vos calculs. La nature sait comment appliquer la gravité dans des contextes quantiques - cela s'est produit dans les premiers instants du big bang, et cela se produit encore au cœur des trous noirs - mais nous, les humains, avons encore du mal à comprendre comment le tour se joue. Une partie du problème réside dans la manière dont les deux théories traitent l'espace et le temps. Alors que la physique quantique considère l'espace et le temps comme immuables, la relativité générale les déforme au petit déjeuner.

D'une manière ou d'une autre, une théorie de la gravité quantique devrait concilier ces idées sur l'espace et le temps. Une façon d'y parvenir serait d'éliminer le problème à sa source, l'espace-temps lui-même, en faisant émerger l'espace et le temps de quelque chose de plus fondamental. Ces dernières années, plusieurs pistes de recherche différentes ont toutes suggéré qu'au niveau le plus profond de la réalité, l'espace et le temps n'existent pas de la même manière que dans notre monde quotidien. Au cours de la dernière décennie, ces idées ont radicalement changé la façon dont les physiciens envisagent les trous noirs. Aujourd'hui, les chercheurs utilisent ces concepts pour élucider le fonctionnement d'un phénomène encore plus exotique : les trous de ver, connexions hypothétiques en forme de tunnel entre des points distants de l'espace-temps. Ces succès ont entretenu l'espoir d'une percée encore plus profonde. Si l'espace-temps est émergent, alors comprendre d'où il vient - et comment il pourrait naître de n'importe quoi d'autre - pourrait être la clé manquante qui ouvrirait enfin la porte à une théorie du tout.

LE MONDE DANS UN DUO DE CORDES

Aujourd'hui, la théorie candidate à la gravité quantique la plus populaire parmi les physiciens est la théorie des cordes. Selon cette idée, les cordes éponymes sont les constituants fondamentaux de la matière et de l'énergie, donnant naissance à la myriade de particules subatomiques fondamentales observées dans les accélérateurs de particules du monde entier. Elles sont même responsables de la gravité - une particule hypothétique porteuse de la force gravitationnelle, un "graviton", est une conséquence inévitable de la théorie.

Mais la théorie des cordes est difficile à comprendre : elle se situe dans un territoire mathématique que les physiciens et les mathématiciens ont mis des décennies à explorer. Une grande partie de la structure de la théorie est encore inexplorée, des expéditions sont encore prévues et des cartes restent à établir. Dans ce nouveau domaine, la principale technique de navigation consiste à utiliser des dualités mathématiques, c'est-à-dire des correspondances entre un type de système et un autre.

La dualité évoquée au début de cet article, entre les petites dimensions et les grandes, en est un exemple. Si vous essayez de faire entrer une dimension dans un petit espace, la théorie des cordes vous dit que vous obtiendrez quelque chose de mathématiquement identique à un monde où cette dimension est énorme. Selon la théorie des cordes, les deux situations sont identiques : vous pouvez aller et venir librement de l'une à l'autre et utiliser les techniques d'une situation pour comprendre le fonctionnement de l'autre. "Si vous gardez soigneusement la trace des éléments fondamentaux de la théorie, dit Paquette, vous pouvez naturellement trouver parfois que... vous pourriez faire croître une nouvelle dimension spatiale."

Une dualité similaire suggère à de nombreux théoriciens des cordes que l'espace lui-même est émergeant. L'idée a germé en 1997, lorsque Juan Maldacena, physicien à l'Institute for Advanced Study, a découvert une dualité entre une théorie quantique bien comprise, connue sous le nom de théorie des champs conforme (CFT), et un type particulier d'espace-temps issu de la relativité générale, appelé espace anti-de Sitter (AdS). Ces deux théories semblent très différentes : la CFT ne comporte aucune gravité, tandis que l'espace AdS intègre toute la théorie de la gravité d'Einstein. Pourtant, les mêmes mathématiques peuvent décrire les deux mondes. Lorsqu'elle a été découverte, cette correspondance AdS/CFT a fourni un lien mathématique tangible entre une théorie quantique et un univers complet comportant une gravité.

Curieusement, l'espace AdS dans la correspondance AdS/CFT comportait une dimension de plus que la CFT quantique. Mais les physiciens se sont délectés de ce décalage, car il s'agissait d'un exemple parfaitement élaboré d'un autre type de correspondance conçu quelques années plus tôt par les physiciens Gerard 't Hooft de l'université d'Utrecht aux Pays-Bas et Leonard Susskind de l'université de Stanford, connu sous le nom de principe holographique. Se fondant sur certaines des caractéristiques particulières des trous noirs, Gerard 't Hooft et Leonard Susskind soupçonnaient que les propriétés d'une région de l'espace pouvaient être entièrement "codées" par sa frontière. En d'autres termes, la surface bidimensionnelle d'un trou noir contiendrait toutes les informations nécessaires pour savoir ce qui se trouve dans son intérieur tridimensionnel, comme un hologramme. "Je pense que beaucoup de gens ont pensé que nous étions fous", dit Susskind. "Deux bons physiciens devenusdingues".

De même, dans la correspondance AdS/CFT, la CFT quadridimensionnelle encode tout ce qui concerne l'espace AdS à cinq dimensions auquel elle est associée. Dans ce système, la région entière de l'espace-temps est construite à partir des interactions entre les composants du système quantique dans la théorie des champs conforme. Maldacena compare ce processus à la lecture d'un roman. "Si vous racontez une histoire dans un livre, il y a les personnages du livre qui font quelque chose", dit-il. "Mais tout ce qu'il y a, c'est une ligne de texte, non ? Ce que font les personnages est déduit de cette ligne de texte. Les personnages du livre seraient comme la théorie [AdS] globale. Et la ligne de texte est la [CFT]."

Mais d'où vient l'espace de l'espace AdS ? Si cet espace est émergent, de quoi émerge-t-il ? La réponse est un type d'interaction spécial et étrangement quantique dans la CFT : l'intrication, une connexion à longue distance entre des objets, corrélant instantanément leur comportement de manière statistiquement improbable. L'intrication a beaucoup troublé Einstein, qui l'a qualifiée d'"action étrange à distance".

Connaîtrons-nous un jour la véritable nature de l'espace et du temps ?

 Pourtant, malgré son caractère effrayant, l'intrication est une caractéristique essentielle de la physique quantique. Lorsque deux objets interagissent en mécanique quantique, ils s'intriquent généralement et le resteront tant qu'ils resteront isolés du reste du monde, quelle que soit la distance qui les sépare. Dans des expériences, les physiciens ont maintenu l'intrication entre des particules distantes de plus de 1 000 kilomètres et même entre des particules au sol et d'autres envoyées vers des satellites en orbite. En principe, deux particules intriquées pourraient maintenir leur connexion sur des côtés opposés de la galaxie ou de l'univers. La distance ne semble tout simplement pas avoir d'importance pour l'intrication, une énigme qui a troublé de nombreux physiciens pendant des décennies.

Mais si l'espace est émergent, la capacité de l'intrication à persister sur de grandes distances n'est peut-être pas si mystérieuse - après tout, la distance est une construction. Selon les études de la correspondance AdS/CFT menées par les physiciens Shinsei Ryu de l'université de Princeton et Tadashi Takayanagi de l'université de Kyoto, l'intrication est ce qui produit les distances dans l'espace AdS en premier lieu. Deux régions d'espace proches du côté AdS de la dualité correspondent à deux composantes quantiques hautement intriquées de la CFT. Plus elles sont intriquées, plus les régions de l'espace sont proches les unes des autres.

Ces dernières années, les physiciens en sont venus à soupçonner que cette relation pourrait également s'appliquer à notre univers. "Qu'est-ce qui maintient l'espace ensemble et l'empêche de se désagréger en sous-régions distinctes ? La réponse est l'intrication entre deux parties de l'espace", déclare Susskind. "La continuité et la connectivité de l'espace doivent leur existence à l'intrication quantique-mécanique". L'intrication pourrait donc sous-tendre la structure de l'espace lui-même, formant la chaîne et la trame qui donnent naissance à la géométrie du monde. "Si l'on pouvait, d'une manière ou d'une autre, détruire l'intrication entre deux parties [de l'espace], l'espace se désagrégerait", déclare Susskind. "Il ferait le contraire de l'émergence. Il désémergerait."

Si l'espace est fait d'intrication, l'énigme de la gravité quantique semble beaucoup plus facile à résoudre : au lieu d'essayer de rendre compte de la déformation de l'espace de manière quantique, l'espace lui-même émerge d'un phénomène fondamentalement quantique. Susskind pense que c'est la raison pour laquelle une théorie de la gravité quantique a été si difficile à trouver en premier lieu. "Je pense que la raison pour laquelle elle n'a jamais très bien fonctionné est qu'elle a commencé par une image de deux choses différentes, [la relativité générale] et la mécanique quantique, et qu'elle les a mises ensemble", dit-il. "Et je pense que l'idée est qu'elles sont beaucoup trop étroitement liées pour être séparées puis réunies à nouveau. La gravité n'existe pas sans la mécanique quantique".

Pourtant, la prise en compte de l'espace émergent ne représente que la moitié du travail. L'espace et le temps étant si intimement liés dans la relativité, tout compte rendu de l'émergence de l'espace doit également expliquer le temps. "Le temps doit également émerger d'une manière ou d'une autre", déclare Mark van Raamsdonk, physicien à l'université de Colombie-Britannique et pionnier du lien entre intrication et espace-temps. "Mais cela n'est pas bien compris et constitue un domaine de recherche actif".

Un autre domaine actif, dit-il, consiste à utiliser des modèles d'espace-temps émergent pour comprendre les trous de ver. Auparavant, de nombreux physiciens pensaient que l'envoi d'objets à travers un trou de ver était impossible, même en théorie. Mais ces dernières années, les physiciens travaillant sur la correspondance AdS/CFT et sur des modèles similaires ont trouvé de nouvelles façons de construire des trous de ver. "Nous ne savons pas si nous pourrions le faire dans notre univers", dit van Raamsdonk. "Mais ce que nous savons maintenant, c'est que certains types de trous de ver traversables sont théoriquement possibles". Deux articles - l'un en 2016 et l'autre en 2018 - ont conduit à une rafale de travaux en cours dans ce domaine. Mais même si des trous de ver traversables pouvaient être construits, ils ne seraient pas d'une grande utilité pour les voyages spatiaux. Comme le souligne Susskind, "on ne peut pas traverser ce trou de ver plus vite qu'il ne faudrait à [la lumière] pour faire le chemin inverse."

Si les théoriciens des cordes ont raison, alors l'espace est construit à partir de l'intrication quantique, et le temps pourrait l'être aussi. Mais qu'est-ce que cela signifie vraiment ? Comment l'espace peut-il être "fait" d'intrication entre des objets, à moins que ces objets ne soient eux-mêmes quelque part ? Comment ces objets peuvent-ils s'enchevêtrer s'ils ne connaissent pas le temps et le changement ? Et quel type d'existence les choses pourraient-elles avoir sans habiter un espace et un temps véritables ?

Ces questions frisent la philosophie, et les philosophes de la physique les prennent au sérieux. "Comment diable l'espace-temps pourrait-il être le genre de chose qui pourrait être émergent ?" demande Eleanor Knox, philosophe de la physique au King's College de Londres. Intuitivement, dit-elle, cela semble impossible. Mais Knox ne pense pas que ce soit un problème. "Nos intuitions sont parfois catastrophiques", dit-elle. Elles "ont évolué dans la savane africaine en interagissant avec des macro-objets, des macro-fluides et des animaux biologiques" et ont tendance à ne pas être transférées au monde de la mécanique quantique. En ce qui concerne la gravité quantique, "Où sont les objets ?" et "Où vivent-ils ?" ne sont pas les bonnes questions à poser", conclut Mme Knox.

Il est certainement vrai que les objets vivent dans des lieux dans la vie de tous les jours. Mais comme Knox et bien d'autres le soulignent, cela ne signifie pas que l'espace et le temps doivent être fondamentaux, mais simplement qu'ils doivent émerger de manière fiable de ce qui est fondamental. Prenons un liquide, explique Christian Wüthrich, philosophe de la physique à l'université de Genève. "En fin de compte, il s'agit de particules élémentaires, comme les électrons, les protons et les neutrons ou, plus fondamental encore, les quarks et les leptons. Les quarks et les leptons ont-ils des propriétés liquides ? Cela n'a aucun sens... Néanmoins, lorsque ces particules fondamentales se rassemblent en nombre suffisant et montrent un certain comportement ensemble, un comportement collectif, alors elles agiront d'une manière qui ressemble à un liquide."

Selon Wüthrich, l'espace et le temps pourraient fonctionner de la même manière dans la théorie des cordes et d'autres théories de la gravité quantique. Plus précisément, l'espace-temps pourrait émerger des matériaux que nous considérons habituellement comme vivant dans l'univers - la matière et l'énergie elles-mêmes. "Ce n'est pas que nous ayons d'abord l'espace et le temps, puis nous ajoutons de la matière", explique Wüthrich. "Au contraire, quelque chose de matériel peut être une condition nécessaire pour qu'il y ait de l'espace et du temps. Cela reste un lien très étroit, mais c'est juste l'inverse de ce que l'on aurait pu penser à l'origine."

Mais il existe d'autres façons d'interpréter les dernières découvertes. La correspondance AdS/CFT est souvent considérée comme un exemple de la façon dont l'espace-temps pourrait émerger d'un système quantique, mais ce n'est peut-être pas vraiment ce qu'elle montre, selon Alyssa Ney, philosophe de la physique à l'université de Californie, à Davis. "AdS/CFT vous donne cette capacité de fournir un manuel de traduction entre les faits concernant l'espace-temps et les faits de la théorie quantique", dit Ney. "C'est compatible avec l'affirmation selon laquelle l'espace-temps est émergent, et une certaine théorie quantique est fondamentale." Mais l'inverse est également vrai, dit-elle. La correspondance pourrait signifier que la théorie quantique est émergente et que l'espace-temps est fondamental, ou qu'aucun des deux n'est fondamental et qu'il existe une théorie fondamentale encore plus profonde. L'émergence est une affirmation forte, dit Ney, et elle est ouverte à la possibilité qu'elle soit vraie. "Mais, du moins si l'on s'en tient à AdS/CFT, je ne vois toujours pas d'argument clair en faveur de l'émergence."

Un défi sans doute plus important pour l'image de la théorie des cordes de l'espace-temps émergent est caché à la vue de tous, juste au nom de la correspondance AdS/CFT elle-même. "Nous ne vivons pas dans un espace anti-de Sitter", dit Susskind. "Nous vivons dans quelque chose de beaucoup plus proche de l'espace de Sitter". L'espace de Sitter décrit un univers en accélération et en expansion, comme le nôtre. "Nous n'avons pas la moindre idée de la façon dont [l'holographie] s'y applique", conclut M. Susskind. Trouver comment établir ce type de correspondance pour un espace qui ressemble davantage à l'univers réel est l'un des problèmes les plus urgents pour les théoriciens des cordes. "Je pense que nous allons être en mesure de mieux comprendre comment entrer dans une version cosmologique de ceci", dit van Raamsdonk.

Enfin, il y a les nouvelles - ou l'absence de nouvelles - provenant des derniers accélérateurs de particules, qui n'ont trouvé aucune preuve de l'existence des particules supplémentaires prévues par la supersymétrie, une idée sur laquelle repose la théorie des cordes. Selon la supersymétrie, toutes les particules connues auraient leurs propres "superpartenaires", ce qui doublerait le nombre de particules fondamentales. Mais le Grand collisionneur de hadrons du CERN, près de Genève, conçu en partie pour rechercher des superpartenaires, n'en a vu aucun signe. "Toutes les versions vraiment précises de [l'espace-temps émergent] dont nous disposons se trouvent dans des théories supersymétriques", déclare Susskind. "Une fois que vous n'avez plus de supersymétrie, la capacité à suivre mathématiquement les équations s'évapore tout simplement de vos mains".

LES ATOMES DE L'ESPACE-TEMPS

La théorie des cordes n'est pas la seule idée qui suggère que l'espace-temps est émergent. La théorie des cordes "n'a pas réussi à tenir [ses] promesses en tant que moyen d'unir la gravité et la mécanique quantique", déclare Abhay Ashtekar, physicien à l'université d'État de Pennsylvanie. "La puissance de la théorie des cordes réside désormais dans le fait qu'elle fournit un ensemble d'outils extrêmement riche, qui ont été largement utilisés dans tout le spectre de la physique." Ashtekar est l'un des pionniers originaux de l'alternative la plus populaire à la théorie des cordes, connue sous le nom de gravité quantique à boucles. Dans la gravité quantique à boucles, l'espace et le temps ne sont pas lisses et continus, comme c'est le cas dans la relativité générale, mais ils sont constitués de composants discrets, ce qu'Ashtekar appelle des "morceaux ou atomes d'espace-temps".

Ces atomes d'espace-temps sont connectés en réseau, avec des surfaces unidimensionnelles et bidimensionnelles qui les réunissent en ce que les praticiens de la gravité quantique à boucle appellent une mousse de spin. Et bien que cette mousse soit limitée à deux dimensions, elle donne naissance à notre monde quadridimensionnel, avec trois dimensions d'espace et une de temps. Ashtekar compare ce monde à un vêtement. "Si vous regardez votre chemise, elle ressemble à une surface bidimensionnelle", dit-il. "Si vous prenez une loupe, vous verrez immédiatement qu'il s'agit de fils unidimensionnels. C'est juste que ces fils sont si denses que, pour des raisons pratiques, vous pouvez considérer la chemise comme une surface bidimensionnelle. De même, l'espace qui nous entoure ressemble à un continuum tridimensionnel. Mais il y a vraiment un entrecroisement par ces [atomes d'espace-temps]".

Bien que la théorie des cordes et la gravité quantique à boucles suggèrent toutes deux que l'espace-temps est émergent, le type d'émergence est différent dans les deux théories. La théorie des cordes suggère que l'espace-temps (ou du moins l'espace) émerge du comportement d'un système apparemment sans rapport, sous forme d'intrication. Pensez à la façon dont les embouteillages émergent des décisions collectives des conducteurs individuels. Les voitures ne sont pas faites de la circulation - ce sont les voitures qui font la circulation. Dans la gravité quantique à boucles, par contre, l'émergence de l'espace-temps ressemble davantage à une dune de sable en pente émergeant du mouvement collectif des grains de sable dans le vent. L'espace-temps lisse et familier provient du comportement collectif de minuscules "grains" d'espace-temps ; comme les dunes, les grains sont toujours du sable, même si les gros grains cristallins n'ont pas l'apparence ou le comportement des dunes ondulantes.

Malgré ces différences, gravité quantique à boucles et  théorie des cordes suggèrent toutes deux que l'espace-temps émerge d'une réalité sous-jacente. Elles ne sont pas non plus les seules théories proposées de la gravité quantique qui vont dans ce sens. La théorie de l'ensemble causal, un autre prétendant à une théorie de la gravité quantique, postule que l'espace et le temps sont également constitués de composants plus fondamentaux. "Il est vraiment frappant de constater que, pour la plupart des théories plausibles de la gravité quantique dont nous disposons, leur message est, en quelque sorte, que l'espace-temps relativiste général n'existe pas au niveau fondamental", déclare Knox. "Les gens sont très enthousiastes lorsque différentes théories de la gravité quantique s'accordent au moins sur quelque chose."

L'AVENIR DE L'ESPACE AUX CONFINS DU TEMPS

La physique moderne est victime de son propre succès. La physique quantique et la relativité générale étant toutes deux d'une précision phénoménale, la gravité quantique n'est nécessaire que pour décrire des situations extrêmes, lorsque des masses énormes sont entassées dans des espaces insondables. Ces conditions n'existent que dans quelques endroits de la nature, comme le centre d'un trou noir, et surtout pas dans les laboratoires de physique, même les plus grands et les plus puissants. Il faudrait un accélérateur de particules de la taille d'une galaxie pour tester directement le comportement de la nature dans des conditions où règne la gravité quantique. Ce manque de données expérimentales directes explique en grande partie pourquoi la recherche d'une théorie de la gravité quantique par les scientifiques a été si longue.

Face à l'absence de preuves, la plupart des physiciens ont placé leurs espoirs dans le ciel. Dans les premiers instants du big bang, l'univers entier était phénoménalement petit et dense - une situation qui exige une gravité quantique pour le décrire. Et des échos de cette époque peuvent subsister dans le ciel aujourd'hui. "Je pense que notre meilleure chance [de tester la gravité quantique] passe par la cosmologie", déclare Maldacena. "Peut-être quelque chose en cosmologie que nous pensons maintenant être imprévisible, qui pourra peut-être être prédit une fois que nous aurons compris la théorie complète, ou une nouvelle chose à laquelle nous n'avions même pas pensé."

Les expériences de laboratoire pourraient toutefois s'avérer utiles pour tester la théorie des cordes, du moins indirectement. Les scientifiques espèrent étudier la correspondance AdS/CFT non pas en sondant l'espace-temps, mais en construisant des systèmes d'atomes fortement intriqués et en observant si un analogue à l'espace-temps et à la gravité apparaît dans leur comportement. De telles expériences pourraient "présenter certaines caractéristiques de la gravité, mais peut-être pas toutes", déclare Maldacena. "Cela dépend aussi de ce que l'on appelle exactement la gravité".

Connaîtrons-nous un jour la véritable nature de l'espace et du temps ? Les données d'observation du ciel ne seront peut-être pas disponibles de sitôt. Les expériences en laboratoire pourraient être un échec. Et comme les philosophes le savent bien, les questions sur la véritable nature de l'espace et du temps sont très anciennes. Ce qui existe "est maintenant tout ensemble, un, continu", disait le philosophe Parménide il y a 2 500 ans. "Tout est plein de ce qui est". Parménide insistait sur le fait que le temps et le changement étaient des illusions, que tout partout était un et le même. Son élève Zénon a créé de célèbres paradoxes pour prouver le point de vue de son professeur, prétendant démontrer que le mouvement sur n'importe quelle distance était impossible. Leurs travaux ont soulevé la question de savoir si le temps et l'espace étaient en quelque sorte illusoires, une perspective troublante qui a hanté la philosophie occidentale pendant plus de deux millénaires.

Le fait que les Grecs de l'Antiquité aient posé des questions telles que "Qu'est-ce que l'espace ?", "Qu'est-ce que le temps ?", "Qu'est-ce que le changement ?" et que nous posions encore des versions de ces questions aujourd'hui signifie qu'il s'agissait des bonnes questions à poser", explique M. Wüthrich. "C'est en réfléchissant à ce genre de questions que nous avons appris beaucoup de choses sur la physique".

Auteur: Becker Adam

Info: Scientific American, février 2022

[ monde de l'observateur humain ] [ univers nanomonde ]

 

Commentaires: 0

Ajouté à la BD par miguel