transmission

Quand l’énergie et l’information voyagent ensemble : nouvelle découverte en physique quantique

Malgré ses complexités, la physique quantique est un domaine fascinant qui offre des perspectives inédites sur le fonctionnement de l’Univers à une échelle microscopique. Une étude menée récemment par une équipe de chercheurs a révélé une relation étonnamment simple entre deux concepts centraux de cette discipline : la transmission d’énergie et celle d’information à travers des interfaces reliant différentes théories quantiques des champs. Ces travaux apportent ainsi un nouvel éclairage sur la manière dont ces deux éléments fondamentaux interagissent.

La physique quantique des champs, c’est quoi ?

La théorie quantique des champs (TQC) est utilisée pour décrire comment les particules subatomiques, comme les électrons ou les photons, interagissent entre elles et avec des champs, tels que le champ électromagnétique. C’est une base essentielle pour comprendre non seulement les particules élémentaires, mais aussi les matériaux complexes. En utilisant cette théorie, les chercheurs peuvent en effet explorer les interactions fondamentales de l’Univers et développer de nouvelles technologies.

Dans ce cadre, les interfaces entre différentes théories quantiques des champs jouent un rôle clé. Ces interfaces sont des zones de transition où deux théories différentes peuvent interagir ou coexister. Par exemple, elles sont cruciales lorsqu’il s’agit de comprendre comment l’énergie ou l’information est transférée d’un système à un autre.

Jusqu’à récemment, il était toutefois difficile de mesurer et de comprendre précisément ce qui se passe lors de ces transitions. Une nouvelle étude menée par des chercheurs de l’Université de Tokyo a réussi à surmonter ces défis en révélant des relations simples entre les taux de transmission d’énergie et d’information à travers ces interfaces.

Énergie et information : les nouvelles règles

Pour cette étude, les chercheurs se sont penchés sur les théories quantiques des champs en deux dimensions avec invariance d’échelle, un cadre théorique relativement simplifié, mais crucial pour comprendre certains systèmes physiques. Ils ont alors découvert une série d’inégalités qui régissent la transmission de l’énergie et de l’information à travers une interface. Concrètement, leurs travaux ont montré que : 

- Le taux de transfert d’énergie est toujours inférieur ou égal au taux de transfert d’information.

- Le taux de transfert d’information est à son tour limité par la taille de l’espace de Hilbert qui mesure le nombre d’états possibles d’un système à haute énergie.

Ces inégalités simples, mais universelles suggèrent que pour qu’un système puisse transférer de l’énergie, il doit également transférer de l’information. De plus, la transmission d’énergie et d’information est contrainte par la complexité du système, représentée par la taille de l’espace de Hilbert.

Le schéma d’une surface limite montre comment pour transmettre de l’énergie, il faut également transmettre des informations. Crédits : Yuya Kusuki

Une découverte qui fait avancer la compréhension des systèmes quantiques

Avant cette étude, il n’existait aucune relation clairement définie entre le transfert d’énergie et d’information dans ces systèmes complexes. Les chercheurs savaient que ces deux quantités étaient importantes, mais les liens entre elles restaient obscurs. Grâce à ces travaux, il est désormais possible d’établir une connexion formelle entre elles, ce qui ouvre ainsi de nouvelles perspectives pour la recherche en physique théorique.

Ces découvertes sont particulièrement importantes pour les systèmes où l’énergie et l’information doivent être transmises efficacement. Par exemple, dans la physique des particules, elles pourraient aider à mieux comprendre les collisions de particules à très haute énergie, où des transitions d’un état à un autre se produisent fréquemment. Dans la physique de la matière condensée, elles pourraient éclairer les processus liés à la conduction électrique ou aux transitions de phase, comme celles observées dans les matériaux supraconducteurs.

Vers de nouvelles applications pratiques ?

Bien que cette découverte soit principalement théorique, ses implications pourraient se manifester dans des domaines plus concrets à long terme. Une meilleure compréhension de la relation entre l’énergie et l’information dans les systèmes quantiques pourrait notamment jouer un rôle clé dans le développement de nouvelles technologies de communication et d’informatique quantique.

Imaginez par exemple des ordinateurs quantiques capables de résoudre des problèmes complexes beaucoup plus rapidement que les ordinateurs actuels. Ces technologies, encore en phase de recherche et développement, nécessitent une compréhension approfondie des mécanismes sous-jacents du transfert d’information et d’énergie à travers des systèmes quantiques complexes.

En outre, cette étude pourrait également influencer la recherche en thermodynamique quantique, un domaine émergent qui explore les principes de la thermodynamique à l’échelle quantique. Par exemple, les découvertes pourraient améliorer l’efficacité des dispositifs de stockage d’énergie avancés, comme les batteries quantiques, en optimisant la manière dont l’énergie est transférée et stockée à une échelle microscopique.

En somme, cette étude sur la relation entre le transfert d’énergie et d’information dans les systèmes quantiques des champs constitue donc une avancée significative dans notre compréhension des interactions fondamentales de l’Univers.



 

Auteur: Internet

Info: https://sciencepost.fr/, Brice Louvet, 20 septembre 2024,

[ échange ] [ limitation ] [ complexité ] [ nanomonde ]

 

Commentaires: 0

Ajouté à la BD par miguel

Commentaires

No comments