cosmologie

Notre détecteur de nouvelle physique par réseau neuronal (NNPhD) à automatiquement découvert Neptune à partir de données sur l'orbite d'Uranus. Il décèle aussi le rayonnement gravitationnel à partir de données sur les étoiles à neutrons. Le Machine Learning a un grand potentiel pour la recherche en physique ! 

(La conservation de l'énergie est un principe de base de la physique. Sa rupture implique souvent une nouvelle physique. Cet article présente une méthode de découverte de "nouvelle physique" basée sur des données. Plus précisément : étant donnée une trajectoire régie par des forces inconnues, notre détecteur neuronal de nouvelle physique (NNPhD) vise à déceler une nouvelle physique en décomposant le champ de force en composantes conservatives et non conservatives,  représentées respectivement par un réseau neuronal lagrangien (LNN) et un réseau neuronal sans contrainte, entraînés à minimiser l'erreur de récupération de force, plus une constante de  λ  fois la magnitude de la force non-conservatrice prédite. Nous montrons qu'une transition de phase se produit à   λ  =  1, de manière universelle pour des forces arbitraires. Nous démontrons que la NNPhD détecte avec succès une nouvelle physique via de ludiques expériences numériques, redécouvrant la friction à partir d'un double pendule amorti, Neptune à partir de l'orbite d'Uranus, et les ondes gravitationnelles à partir d'une orbite en spirale. Nous montrons également comment le NNPhD couplé à un intégrateur surpasse à la fois un LNN et un réseau neuronal sans contrainte, pour ce qui est de prédire l'avenir d'un double pendule amorti.)

Auteur: Tegmark Max

Info: Sur son fil FB, 24 déc 2021. En collaboration avec Ziming Liu, Bohan Wang, Qi Meng, Wei Chen et Tie-Yan Liu. Phys. Rev. E 104, 055302

[ pesanteur ] [ interactions ]

 

Commentaires: 0

Ajouté à la BD par miguel

Commentaires

No comments