Il ne fait aucun doute que les IA sont biaisées. Mais beaucoup déclarent que ces problématiques de l’IA existent parce que nous humains sommes imparfaits, plus que les machines. "Les machines sont-elles condamnées à hériter des préjugés humains ?", titrent les journaux. "Les préjugés humains sont un énorme problème pour l'IA. Voilà comment on va arranger ça." Mais ces récits perpétuent une dangereuse erreur algorithmique qu'il faut éviter.
Oui, les humains sont subjectifs. Oui, malgré les efforts conscients et inconscients de ne pas l'être, nous faisons de la discrimination, nous stéréotypons et portons toutes sortes de jugements de valeur sur les gens, les produits et la politique. Mais nos préjugés ne sont pas correctement mesurés ou modélisés par les machines. Non, les tendances machine sont dues à la logique même de la collecte des données : le système binaire.
Le système binaire est la chaîne de 0 et 1 à la base de tous les systèmes informatiques. Cette méthode mathématique permet de réduire et de calculer efficacement les grands nombres et, deuxièmement, elle permet la conversion de l'alphabet et de la ponctuation en ASCII (American Standard Code for Information Interchange).
Mais ne vous laissez pas berner : Ces 0 et 1 ne signifiant pas que la machine comprend le monde et les langages comme nous le faisons : "La plupart d'entre nous, la plupart du temps, suivons des instructions qui nous sont données par ordinateur plutôt que l'inverse", explique l'historien des technologies George Dyson. Afin de pouvoir communiquer avec les ordinateurs, nous sommes ajustés et orientés vers leur logique, et non vers la nôtre.
Le système binaire réduit tout à des 0 et des 1 insignifiants, quand la vie et l'intelligence font fonctionner XY en tandem. lui rend la lecture et le traitement des données quantitatives plus pratiques, plus efficaces et plus rentables pour les machines. Mais c'est au détriment des nuances, de la richesse, du contexte, des dimensions et de la dynamique de nos langues, cultures, valeurs et expériences.
Il ne faut pas accabler ici les développeurs de la Silicon Valley pour ce système binaire biaisé - mais plutôt Aristote.
Le parti pris binaire d'Aristote
Si vous pensez à Aristote, vous pensez probablement au philosophe grec antique comme à un des pères fondateurs de la démocratie, et non comme l'ancêtre de siècles de logique mécanique et de méthodes scientifiques erronées. C'est cependant sa théorie du "dualisme", selon laquelle quelque chose est soit vrai soit faux, logique ou illogique, qui nous a mis dans cette situation délicate en premier lieu.
Vers 350 av. J.-C., Aristote a voulu réduire et structurer la complexité du monde. Pour ce faire, il fit des emprunts à la Table des Opposés de Pythagore, dans laquelle deux éléments sont comparés : fini, infini... impair, pair... un, beaucoup... droite, gauche... repos, mouvement ... droit, tordu...etc.
Mais au lieu d'appliquer ce dualisme à la géométrie neutre comme l'avait fait Pythagore, Aristote l'appliqua aux personnes, aux animaux et à la société. Ce faisant, il a conçu un patriarcat hiérarchique social polarisé clivant, enraciné dans ses valeurs internes et ses préjugés : Les objets qu'il ordonnait avoir plus de valeur devinrent des 1, et ceux de moindre importance des 0. En ce qui concerne les femmes, par exemple, il écrit : "La relation de l'homme à la femme est par nature une relation de supérieur à inférieur et de souverain à gouverné."
Hélas, le système de classification hiérarchique d'Aristote a été implémenté dans l'IA, la pondérant en faveur d'hommes comme lui. Le système même sur lequel toute la technologie moderne est construite contient les artefacts du sexisme d'il y a 2 000 ans.
1 = vrai = rationnel = droit = masculin
0 = faux = émotions = gauche = féminin
Si Aristote avait créé la démocratie - et la démocratie est censée être une véritable représentation - les femmes et les gens de couleur auraient dû avoir un accès égal à l'éducation , avoir voix au chapitre dans les forums et avoir le droit de vote en 350 av. JC. Il n'aurait pas été nécessaire de se battre jusqu'en 1920 pour que le vote féminin soit ratifié aux Etats-Unis. Il n'y aurait pas eu d'esclavage et pas besoin du mouvement pour les droits civiques. Tout le monde aurait été classé et considéré comme égal dès le départ.
Le classement biaisé d'Aristote est maintenant verrouillé et renforcé par plus de 15 millions d'ingénieurs. Aristote aurait dû lire les notes de son précédent, Socrate. Selon les souvenirs de Platon, Socrate considérait les oracles féminins de Delphes comme « un guide essentiel du développement personnel et de l'État ». De plus, dans le Banquet de Platon, Socrate se souvient de l'époque où il était l'élève de Diotime de Mantinée, une femme philosophe dont il tenait en haute estime l'intelligence. Dans le livre V, Socrate est crédité d'avoir suggéré que les femmes sont également qualifiées pour diriger et gouverner : "Il n'y a pas de pratique des gouverneurs d'une ville qui appartient à une femme parce qu'elle est une femme". , ou à un homme parce qu'il est un homme.
Mais au lieu que les idées de Socrate sur l'égalité enracinent les idées occidentales sur l'intelligence, nous nous sommes retrouvés avec la logique d'Aristote et son classement biaisé sans être conscients de ses origines binaires et anti-démocratiques.
Mais ne blâmons pas seulement Aristote. Deux autres coquins ont contribué à ces problèmes sociaux et scientifiques : Descartes et Leibniz.
Descartes - philosophe français du XVIIe siècle qui a inventé l'expression "je pense, donc je suis" -, a porté l'idée qu'un sujet n'a ni matière ni valeur autre que ce que le visiteur attribue et déduit.(S'il avait dit "Nous pensons, donc nous sommes", cela aurait mieux reflété comment nous sommes symbiotiquement informés par les perceptions les uns et des autres.)
En outre, Descartes a proposé une plus grande séparation de l'esprit du corps et des émotions dans son traité de 1641, Méditations sur la Première Philosophie. Il a soutenu que nos esprits sont dans le domaine du spirituel tandis que nos corps et nos émotions sont dans le domaine du physique, et que les deux royaumes ne peuvent pas s'influencer mutuellement. Ce qui a causé des problèmes en IA parce que maintenant nous empilons des unités d'émotions sur des couches de classification binaires d'une manière artificielle et non intégrée. Encore du binaire.
La logique déductive-inductive de Descartes, qu'il explora dans son discours sur la méthode de 1637, fut créée parce qu'il était désabusé par les méthodes non systématiques des scientifiques de son temps. Il fit valoir que les mathématiques ont été construites sur une "base solide", et a donc cherché à établir un nouveau système de vérité fondé sur Aristote 1 = vrai = valide, et 0 = faux = invalide. La différence étant qu'il a mis les lignes de la logique syllogistique d'Aristote au sein d'une structure arborescente. Structures arborescentes qui sont maintenant utilisées dans les réseaux neuronaux récurrents du NLP (Natural Language Processing)
Vint ensuite Leibniz, le philosophe et avocat allemand inventa le calcul modifié de son contemporain, Newton. Il a créé le système binaire entre 1697 et 1701 afin d'obtenir des verdicts "oui/non" plus rapides et ainsi réduire les grands nombres en unités plus faciles à gérer de 0 et 1.
Contrairement aux autres, Leibniz était sinophile. En 1703, le prêtre jésuite Bouvet lui avait envoyé une copie du Yi King (le Livre des Changements), artefact culturel chinois dont l'origine remonte à 5.000 ans. Il était fasciné par les similitudes apparentes entre les lignes horizontales et les intervalles des hexagrammes du Yi King et les 0 et 1 des lignes verticales de son système binaire. Il interpréta faussement ces intervalles comme étant du vide (donc zéro) croyant (à tort) que les hexagrammes confirmaient que son système binaire était la bonne base pour un système logique universel.
Leibniz fit trois autres erreurs majeures. Tout d'abord, il a fait pivoter les hexagrammes de leurs positions horizontales naturelles vers les positions verticales pour les faire correspondre à ses lignes binaires. Deuxièmement, il les sépare du contexte des symboles chinois et des chiffres correspondants. Troisièmement, puisqu'il n'était pas chinois et qu'il ne comprenait pas l'héritage philosophique ou la langue, il suppose que les hexagrammes représentaient les nombres 0 et 1'ils représentent des énergies négatives et positives, Yin Yang, homme et femme.Erreurs qui signifient que Leibniz perd beaucoup d'informations et de connaissances venant des codes du Yi King et de la vraie signification de ses hexagrammes.
Au lieu de créer un système universel cohérent, le système binaire de Leibniz renforça les modèles de pensée occidentale de Descartes amplifiant la base biaisée d'Aristote, nous verrouillant davantage, nous et les machines que nous avons créées, vers une logique non naturelle.
Le système binaire dans l'informatique moderne
Les classifications binaires d'Aristote sont donc maintenant évidentes dans tous les systèmes de données d'aujourd'hui, servant, préservant, propageant et amplifiant les biais partout dans les couches d'apprentissage machine.
Exemples de biais binaires dans les front-end utilisateur et le traitement des données :
glissement à droite = 1, glissement à gauche = 0
cliquer sur "like" sur Facebook = 1, pas cliquer sur like = 0
nos émotions complexes étant offertes grossièrement comme positifs = 1, négatifs = 0 dans les cadres de la PN
convertir des paires d'objets comparés et leurs caractéristiques en 0 ou 1, par exemple pomme = 1, orange = 0, ou lisse = 1, bosselé = 0
lignes et colonnes pleines de 0 et de 1 dans des graphes géants "big data"
Mais le problème de la logique binaire est qu'elle ne permet pas de comprendre et de modéliser pourquoi et comment les gens ont choisi une option plutôt qu'une autre. Les machines enregistrent simplement que les gens ont fait un choix, et qu'il y a un résultat.
Les machines sont donc étalonnées à partir de ces biais binaires, pas à partir des nôtres. Bien sûr, nous sommes remplis de nos propres défauts et faiblesses très humains, mais les cadres conceptuels informatiques existants sont incapables de corriger ces erreurs (et les ingénieurs n'écrivent que du code qui correspond aux limites de l'ancienne logique).
Heureusement, il existe une alternative. Les philosophies occidentales d'Aristote, de Descartes et de Leibniz sont opposées aux philosophies orientales, elles fondées sur l'équilibre naturel, la cohérence et l'intégration. Le concept chinois de Yin Yang, par exemple, met l'accent sur la dynamique égale et symbiotique du masculin et du féminin en nous et dans l'univers. Ces idées décrites dans le Yi King, que Leibniz n'a pas reconnues.
La nature rejette également le binaire. Des milliards d'années avant que le parti pris d'Aristote ne s'imprime dans la logique informatique occidentale, la nature codifiait l'intelligence comme la coexistence entrelacée de la femme X et de l'homme Y dans notre ADN. De plus, la recherche quantique a montré que les particules peuvent avoir des états de superposition enchevêtrés où elles sont à la fois 0 et 1 en même temps, tout comme le Yin Yang. La nature ne fonctionne pas en binaire, pas même avec les pigeons.Alors pourquoi le faisons-nous en informatique ?
Nous ne classons et ne qualifions pas nécessairement le monde qui nous entoure avec les préjugés hiérarchiques binaires d'Aristote. Mais la façon dont les données sont recueillies est noir (0) et blanc (1), avec des nuances de gris fournies par des pourcentages de ces données, alors que la nature et les philosophies orientales montrent que nos perceptions ne sont que vagues de couleurs mélangées ou arc-en-ciel.
Tant que nous n'aurons pas conçu des modes de catégorisation non binaires et plus holistiques en IA, les ordinateurs ne seront pas en mesure de modéliser l'image animée en technicolor de notre intelligence. Ce n'est qu'alors que les machines représentent nos divers langages, raisonnements, valeurs, cultures, qualités et comportements humains.
Auteur:
Info: https://qz.com/1515889/aristotles-binary-philosophies-created-todays-ai-bias/?utm_source=facebook&utm_medium=partner-share&utm_campaign=partner-bbc
Commentaires: 1
Le sous-projectionniste
14.07.2019
voilà pourquoi la logique tétravalente que nous indique le fonctionnement du carbone est si intéressante....