Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 3
Temps de recherche: 0.0254s

limitation

Si l'on essaie de faire de l'intelligence artificielle, on comprend très vite les limites de la construction et de la technologie de pointe. On est allé très loin dans l'ingénierie mécanique, on fait, aujourd'hui des ordinateurs extrêmement puissants et de plus en plus miniaturisés, mais le vrai problème reste de comprendre comment un enfant apprend la notion de la couleur rouge.

Auteur: Steels Luc

Info:

[ IA ] [ machine learning ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par miguel

théorie-pratique

Le débat pourrait aider les modèles d’IA à converger vers la vérité

Laisser les systèmes d’IA discuter entre eux peut aider à révéler quand un grand modèle linguistique a commis des erreurs.

En février 2023, Bard, le chatbot d'intelligence artificielle de Google, a affirmé que le télescope spatial James Webb avait capturé la première image d'une planète en dehors de notre système solaire. Ce n'était pas le cas. Lorsque des chercheurs de l'université Purdue ont posé plus de 500 questions de programmation à ChatGPT d'OpenAI, plus de la moitié des réponses étaient inexactes.

Ces erreurs étaient faciles à repérer, mais les experts craignent qu’à mesure que les modèles deviennent plus grands et répondent à des questions plus complexes, leur expertise finira par dépasser celle de la plupart des utilisateurs humains. Si de tels systèmes " surhumains " voient le jour, comment pourrons-nous leur faire confiance ? " Les problèmes que vous essayez de résoudre dépassent vos capacités pratiques ", a déclaré Julian Michael, informaticien au Centre de science des données de l'Université de New York. " Comment superviser un système pour qu'il accomplisse avec succès une tâche que vous ne pouvez pas réaliser ? "

Une possibilité est aussi simple qu'extravagante : laisser deux grands modèles débattre de la réponse à une question donnée, avec un modèle plus simple (ou un humain) chargé de reconnaître la réponse la plus précise. En théorie, le processus permet aux deux agents de mettre en évidence les failles dans les arguments de l'autre jusqu'à ce que le juge dispose de suffisamment d'informations pour discerner la vérité. L'approche a été proposée pour la première fois il y a six ans, mais deux séries de conclusions ont été publiées plus tôt cette année, l'une en février de la startup d'IA Anthropic et le deuxième en juillet de Google DeepMind — offrent la première preuve empirique que le débat entre deux LLM aide un juge (humain ou machine) à reconnaître la vérité.

" Ces travaux ont été très importants dans ce qu'ils ont apporté ", a déclaré Michael. Ils offrent également de nouvelles pistes à explorer. Pour ne citer qu'un exemple, Michael et son groupe ont rapporté en septembre que le fait d'entraîner les participants IAs qui débattent à gagner - et pas seulement à converser, comme dans les deux études précédentes - augmentait encore la capacité des juges non-experts à reconnaître la vérité.

L'argument

La création de systèmes d’IA fiables s’inscrit dans un objectif plus vaste appelé alignement, qui vise à garantir qu’un système d’IA partage les mêmes valeurs et objectifs que ses utilisateurs humains. Aujourd’hui, l’alignement repose sur le retour d’information humain, c’est-à-dire sur l’évaluation de l’IA par des personnes. Mais ce retour d’information pourrait bientôt être insuffisant pour garantir l’exactitude d’un système. Ces dernières années, les chercheurs ont de plus en plus appelé à de nouvelles approches en matière de " surveillance évolutive ", qui constituent un moyen de garantir la véracité même lorsque des systèmes surhumains effectuent des tâches que les humains ne peuvent pas effectuer.

Les informaticiens réfléchissent depuis des années à la supervision évolutive. Le débat sur une approche possible a émergé en 2018, avant que les LLM ne deviennent aussi importants et omniprésents qu'ils le sont aujourd'hui. L'un de ses architectes était Geoffrey Irving, qui est aujourd’hui le scientifique en chef de l’Institut de sécurité de l’IA du Royaume-Uni. Il a rejoint OpenAI en 2017, deux ans avant que la société ne lance GPT-2, l’un des premiers LLM à avoir suscité un large intérêt, dans l’espoir de travailler à l’alignement des systèmes d’IA sur les objectifs humains. Leur objectif était la sécurité, a-t-il déclaré, " en essayant simplement de demander aux humains ce qu’ils veulent et [d’amener le modèle à] le faire ".

Son collègue Paul Christiano, aujourd’hui responsable de la sécurité à l’Institut américain de sécurité de l’IA, a abordé ce problème en cherchant des moyens de décomposer des questions complexes en questions plus petites et plus faciles auxquelles un modèle de langage pourrait répondre honnêtement. " Le débat est devenu une variante de ce schéma ", a déclaré Irving, où des arguments successifs ont effectivement divisé une question plus vaste en composants plus petits qui pouvaient être jugés comme exacts.

Irving et Christiano ont travaillé avec Dario Amodei (qui a fondé Anthropic avec sa sœur Daniela en 2021) sur l'utilisation du débat dans les systèmes de langage naturel. (Étant donné que c'était avant GPT-2, les modèles de langage étaient trop faibles pour tester le débat de manière empirique, ils se sont donc concentrés sur des arguments conceptuels et une expérience de jeu-jouet.) L'idée était simple : poser une question à deux copies similaires d'un modèle d'IA puissant et les laisser trouver la réponse pour convaincre un juge qu'ils ont raison. Irving a comparé cela au jeu en solo, qui a aidé les systèmes d'IA à améliorer leurs stratégies dans des jeux comme les échecs et le Go.

Le trio a conçu des jeux rudimentaires impliquant des images et des questions textuelles. Dans l’un des jeux, deux modèles d’IA avaient chacun accès à la même image représentant le chiffre 5. L’un des modèles affirmait que l’image était en fait le chiffre 5, l’autre qu’il s’agissait d’un 6. Les modèles concurrents se relayaient pour révéler plus de pixels au juge, ce qui constituait un modèle plus faible. Après six tours, le juge a deviné le chiffre avec précision dans 89 % des cas. Lorsqu’on lui montrait des pixels aléatoires, le juge n’a deviné correctement que dans 59 % des cas.

Cet exemple simple, décrit en octobre 2018, a suggéré que le débat pouvait conférer un avantage. Mais les auteurs ont noté plusieurs réserves. Les humains ont tendance à croire ce qu’ils veulent entendre, par exemple, et dans des situations réelles, cet instinct peut prendre le pas sur l’avantage du débat. En outre, certaines personnes sont probablement plus aptes à juger les débats que d’autres – peut-être en est-il de même pour les modèles linguistiques ?

Les auteurs ont également appelé à une meilleure compréhension de la façon dont les humains pensent. Dans un essai de 2019, Irving et Amanda Askell, aujourd'hui chez Anthropic, ont fait valoir que si les systèmes d'IA veulent s'aligner sur les valeurs humaines, nous devons mieux comprendre comment les humains agissent en fonction de nos valeurs. Selon eux, la recherche sur l'IA doit intégrer davantage de travaux sur la manière dont les humains prennent des décisions et parviennent à des conclusions sur la vérité et le mensonge. Les chercheurs ne seront pas en mesure de comprendre comment organiser un débat s'ils ne savent pas comment les gens jugent les arguments ou comment ils parviennent à la vérité.

Pouvoir de persuasion

Un petit sous-ensemble d'informaticiens et de linguistes ont rapidement commencé à rechercher les avantages du débat. Ils ont trouvé des exemples où cela n'a pas aidé.  Dans une étude de 2022 les chercheurs ont soumis des humains à un test difficile à choix multiples et ont demandé aux LLM de fournir des arguments pour différentes réponses. Mais les personnes qui ont entendu les arguments générés par l'IA n'ont pas obtenu de meilleurs résultats au test que celles qui n'ont pas interagi du tout avec les LLMs.

Même si les LLM n'ont pas aidé les humains, certains indices laissaient penser qu'ils pourraient aider les modèles linguistiques. Dans un article de 2023, les chercheurs ont rapporté que lorsque plusieurs copies d'un LLM étaient autorisées à débattre et à converger vers une réponse, plutôt que de convaincre un juge, elles se montraient plus précises, plus souvent. Les deux résultats de cette année sont parmi les premiers tests empiriques à montrer qu'un débat entre LLM peut fonctionner lorsqu'il est jugé par un autre modèle, moins informé.

Le groupe Anthropic a montré à deux modèles experts des extraits d'une histoire de science-fiction, puis leur a posé des questions de compréhension. Chaque modèle a proposé une réponse et, au cours de plusieurs tours, a défendu sa propre réponse et a argumenté contre l'autre. Un juge évaluait ensuite les arguments et décidait qui avait raison. Dans certains cas, le juge avait accès à des citations vérifiées du texte original ; dans d'autres pas.

Lorsque les LLM avaient été entraînés spécifiquement pour être persuasifs, les juges LLM non experts sont parvenus à la bonne réponse dans 76 % des cas. En revanche, lors des tests sans débat, les juges non humains n'ont répondu correctement que dans 54 % des cas, un résultat à peine meilleur qu'en tirant à pile ou face.

" Ils ont réussi à rendre les modèles suffisamment performants en matière de débat pour que l'on puisse commencer à voir des résultats ", a déclaré Michael. 

Deux mois plus tard, l’équipe de Google DeepMind a présenté une expérience similaire avec une variété de tâches et de contraintes, en laissant les modèles linguistiques choisir leur propre camp dans le débat, par exemple. Les tâches comprenaient des questions de compréhension de lecture à choix multiples, des questions sur des articles de Wikipédia et des questions de type oui/non sur des sujets de mathématiques et de sciences de niveau universitaire. Certaines questions impliquaient des images et du texte.

Dans toutes les tâches et configurations expérimentales, le débat a toujours conduit à une plus grande précision. C’était encourageant et pas totalement inattendu. " En principe, nous nous attendons à ce que le débat surpasse ces valeurs de référence dans la plupart des tâches ", a déclaré Zachary Kenton, qui a codirigé l’étude DeepMind. " C’est parce que le juge a l’occasion de voir les deux faces de l’argument dans un débat et devrait donc être mieux informé. "

Avec ces deux études, les chercheurs ont montré pour la première fois que le débat pouvait faire la différence en permettant à d’autres systèmes d’IA de juger de l’exactitude des déclarations d’un LLM. C’est une étape passionnante, mais il reste encore beaucoup de travail avant que nous puissions tirer parti de manière fiable de la confrontation de débatteurs numériques.

Ludifier le débat

La première question est de savoir dans quelle mesure les LLM sont sensibles aux spécificités de leurs contributions et à la structure de l’argumentation. Le comportement des LLM " est sensible à des caractéristiques sans importance telles que le fait de savoir quel débatteur a eu le dernier mot ", a déclaré Kenton. " Ce qui peut conduire à ce que les débats ne dépassent pas ces bases de référence simples sur certaines tâches. "

Ce n’est qu’un début. Le groupe Anthropic a trouvé des preuves montrant que les juges d’IA peuvent être influencés par un argument plus long, même s’il est moins convaincant. D’autres tests ont montré que les modèles peuvent montrer ce qu’on appelle un biais de flagornerie – la tendance d’un LLM à revenir sur une réponse correcte pour faire plaisir à l’utilisateur.  Beaucoup de gens ont cette expérience avec des modèles où il dit quelque chose, et si vous dites “Non, c’est faux”, il dira “Oh, je suis vraiment désolé”, a déclaré Michael. " Le modèle dit “Oh, vous avez raison. Deux plus deux font cinq.” 

Il faut également prendre en compte la situation dans son ensemble : les chercheurs de l'Oxford Internet Institute soulignent que même si les nouveaux articles apportent des preuves empiriques selon lesquelles les LLM peuvent s'orienter mutuellement vers l'exactitude, les résultats ne sont peut-être pas applicables à grande échelle. Sandra Wachter, qui étudie l'éthique et le droit, souligne que les tests comportaient des réponses clairement bonnes ou mauvaises. " C'est peut-être vrai pour un domaine comme les mathématiques, où il existe une vérité de base acceptée, mais dans d'autres cas, " c'est très compliqué, ou c'est très gris, ou vous avez besoin de beaucoup de nuances ". En fin de compte, ces modèles ne sont pas encore totalement compris, ce qui rend difficile de leur faire confiance en tant que juges potentiels.

Enfin, Irving souligne que les chercheurs qui travaillent sur le débat devront répondre à des questions plus vastes. Le débat exige que les débatteurs soient meilleurs que le juge, mais " meilleurs " dépendra de la tâche. " Quelle est la notion-dimension à propos de laquelle les débatteurs en savent le plus? ", a-t-il demandé. Dans ces tests, il s'agit de connaissances. Dans les tâches qui nécessitent du raisonnement ou, par exemple, comment câbler une maison électriquement, cette dimension peut être différente.

Selon Irving, trouver des solutions de surveillance évolutives est un défi critique et ouvert en matière de sécurité de l’IA à l’heure actuelle.

Il est donc encourageant de disposer de preuves empiriques de l’efficacité d’une méthode, même dans certaines situations seulement. " Ce sont des pas dans la bonne direction ", a déclaré Irving. " Il se pourrait que nous poursuivions ces expériences et obtenions des résultats positifs, qui s’amélioreront avec le temps. "


 

 

Auteur: Internet

Info: https://www.quantamagazine.org/, Stephen Ornes, 8 novembre 2024

[ dualité ] [ IAs perroquets ] [ théorie-pratique ] [ limitation booléenne ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-machine

La théorie des jeux peut rendre l'IA plus correcte et plus efficace

Les chercheurs s’appuient sur des idées issues de la théorie des jeux pour améliorer les grands modèles de langage et les rendre plus cohérents.

Imaginez que vous ayez un ami qui donne des réponses différentes à la même question, selon la façon dont vous la posez. " Quelle est la capitale du Pérou ? "  btiendrait une réponse : " Lima est-elle la capitale du Pérou ? " en obtiendrait un autre. Vous seriez probablement un peu inquiet au sujet des facultés mentales de votre ami et vous auriez certainement du mal à faire confiance à ses réponses.

C'est exactement ce qui se passe avec de nombreux grands modèles de langage (LLM), les outils d'apprentissage automatique ultra-puissants qui alimentent ChatGPT et d'autres merveilles de l'intelligence artificielle. Une question générative, ouverte, donne une réponse, et une question discriminante, qui implique de devoir choisir entre des options, en donne souvent une différente. "Il y a un décalage lorsque la même question est formulée différemment", a déclaré Athul Paul Jacob , doctorant au Massachusetts Institute of Technology.

Pour rendre les réponses d'un modèle de langage plus cohérentes - et rendre le modèle globalement plus fiable - Jacob et ses collègues ont conçu un jeu dans lequel les deux modes du modèle sont amenés à trouver une réponse sur laquelle ils peuvent s'entendre. Surnommée le jeu du consensus , cette procédure simple oppose un LLM à lui-même, en utilisant les outils de la théorie des jeux pour améliorer la précision et la cohérence interne du modèle.

"Les recherches explorant l'autocohérence au sein de ces modèles ont été très limitées", a déclaré Shayegan Omidshafiei , directeur scientifique de la société de robotique Field AI. "Cet article est l'un des premiers à aborder ce problème, de manière intelligente et systématique, en créant un jeu permettant au modèle de langage de jouer avec lui-même."

"C'est un travail vraiment passionnant", a ajouté Ahmad Beirami, chercheur scientifique chez Google Research. Pendant des décennies, a-t-il déclaré, les modèles linguistiques ont généré des réponses aux invites de la même manière. "Avec leur idée novatrice consistant à intégrer un jeu dans ce processus, les chercheurs du MIT ont introduit un paradigme totalement différent, qui peut potentiellement conduire à une multitude de nouvelles applications."

Mettre le jeu au travail

Ce nouveau travail, qui utilise les jeux pour améliorer l'IA, contraste avec les approches précédentes, qui mesuraient le succès d'un programme d'IA via sa maîtrise des jeux. En 1997, par exemple, l'ordinateur Deep Blue d'IBM a battu le grand maître d'échecs Garry Kasparov – une étape importante pour les machines dites pensantes. Dix-neuf ans plus tard, un programme de Google DeepMind nommé AlphaGo a remporté quatre matchs sur cinq contre l'ancien champion de Go Lee Sedol, révélant ainsi une autre arène dans laquelle les humains ne régnaient plus en maître. Les machines ont également surpassé les humains dans les jeux de dames, le poker à deux joueurs et d’autres jeux à somme nulle, dans lesquels la victoire d’un joueur condamne invariablement l’autre.

Le jeu de la diplomatie, un jeu favori de politiciens comme John F. Kennedy et Henry Kissinger, posait un défi bien plus grand aux chercheurs en IA. Au lieu de seulement deux adversaires, le jeu met en scène sept joueurs dont les motivations peuvent être difficiles à lire. Pour gagner, un joueur doit négocier et conclure des accords de coopération que n'importe qui peut rompre à tout moment. La diplomatie est tellement complexe qu'un groupe de Meta s'est félicité qu'en 2022, son programme d'IA Cicero ait développé un « jeu de niveau humain » sur une période de 40 parties. Bien qu'il n'ait pas vaincu le champion du monde, Cicero s'est suffisamment bien comporté pour se classer dans les 10 % les plus performants face à des participants humains.

Au cours du projet, Jacob — membre de l'équipe Meta — a été frappé par le fait que Cicéron s'appuyait sur un modèle de langage pour générer son dialogue avec les autres joueurs. Il a senti un potentiel inexploité. L'objectif de l'équipe, a-t-il déclaré, " était de créer le meilleur modèle de langage possible pour jouer à ce jeu ". Mais qu'en serait-il s’ils se concentraient plutôt sur la création du meilleur jeu possible pour améliorer les performances des grands modèles de langage ?

Interactions consensuelles

En 2023, Jacob a commencé à approfondir cette question au MIT, en travaillant avec Yikang Shen, Gabriele Farina et son conseiller Jacob Andreas sur ce qui allait devenir le jeu du consensus. L'idée centrale est venue d'imaginer une conversation entre deux personnes comme un jeu coopératif, où le succès se concrétise lorsqu'un auditeur comprend ce que l'orateur essaie de transmettre. En particulier, le jeu de consensus est conçu pour aligner les deux systèmes du modèle linguistique : le générateur, qui gère les questions génératives, et le discriminateur, qui gère les questions discriminatives.

Après quelques mois d’arrêts et de redémarrages, l’équipe a transposé ce principe dans un jeu complet. Tout d'abord, le générateur reçoit une question. Cela peut provenir d’un humain, ou d’une liste préexistante. Par exemple, " Où est né Barack Obama ? " Le générateur obtient ensuite des réponses de candidats, disons Honolulu, Chicago et Nairobi. Encore une fois, ces options peuvent provenir d'un humain, d'une liste ou d'une recherche effectuée par le modèle de langage lui-même.

Mais avant de répondre, il est également indiqué au générateur s'il doit répondre correctement ou incorrectement à la question, en fonction des résultats d'un pile ou face équitable.

Si c'est face, alors la machine tente de répondre correctement. Le générateur envoie la question initiale, accompagnée de la réponse choisie, au discriminateur. Si le discriminateur détermine que le générateur a intentionnellement envoyé la bonne réponse, chacun obtient un point, en guise d'incitation.

Si la pièce tombe sur pile, le générateur envoie ce qu’il pense être la mauvaise réponse. Si le discriminateur décide qu’on lui a délibérément donné la mauvaise réponse, ils marquent à nouveau tous les deux un point. L’idée ici est d’encourager l’accord. " C'est comme apprendre un tour à un chien ", a expliqué Jacob. " On lui donne une friandise lorsqu'ils fait la bonne chose. "

Le générateur et le discriminateur commencent également doté chacun de  quelques " croyances " initiales. Credo sous forme d'une distribution de probabilité liée aux différents choix. Par exemple, le générateur peut croire, sur la base des informations qu'il a glanées sur Internet, qu'il y a 80 % de chances qu'Obama soit né à Honolulu, 10 % de chances qu'il soit né à Chicago, 5 % de chances qu'il soit né à Nairobi et 5 % de chances qu'il soit ailleurs. Le discriminateur peut commencer avec une distribution différente. Si les deux " acteurs " sont toujours récompensés après être parvenus à un accord, ils se voient également retirer des points s'ils s'écartent trop de leurs convictions initiales. Cet arrangement encourage les joueurs à intégrer leur connaissance du monde – toujours tirée d'Internet – dans leurs réponses, ce qui devrait rendre le modèle plus précis. Sans ce prérequis ils pourraient s’entendre sur une réponse totalement fausse comme celle de Delhi, mais accumuler quand même des points.

Pour chaque question, les deux systèmes jouent environ 1 000 parties l'un contre l'autre. Au cours de ces nombreuses itérations, chaque camp apprend les croyances de l'autre et modifie ses stratégies en conséquence.

Finalement, le générateur et le discriminateur commencent à être davantage d’accord à mesure qu’ils s’installent dans ce qu’on appelle l’équilibre de Nash. C’est sans doute le concept central de la théorie des jeux. Cela représente une sorte d’équilibre dans un jeu – le point auquel aucun joueur ne peut améliorer ses résultats personnels en changeant de stratégie. Au jeu du chifoumi, par exemple, les joueurs obtiennent de meilleurs résultats lorsqu'ils choisissent chacune des trois options exactement un tiers du temps, et ils obtiendront invariablement de moins bons résultats avec toute autre tactique.

Dans le jeu du consensus, cela peut se jouer de plusieurs manières. Le discriminateur pourrait observer qu'il marque un point lorsqu'il dit " correct " chaque fois que le générateur envoie le mot " Honolulu " pour le lieu de naissance d'Obama. Le générateur et le discriminateur apprendront, après avoir joué plusieurs fois, qu'ils seront récompensés s'ils continuent de le faire, et qu'aucun d'eux n'aura aucune motivation pour faire autre chose... consensus qui représente l'un des nombreux exemples possibles d'équilibre de Nash pour cette question. Le groupe du MIT s'est également appuyé sur une forme modifiée d'équilibre de Nash qui intègre les croyances antérieures des joueurs, ce qui permet de maintenir leurs réponses ancrées dans la réalité.

L'effet net, ont observé les chercheurs, est de rendre le modèle linguistique jouant ce jeu plus précis et plus susceptible de donner la même réponse, quelle que soit la façon dont la question est posée. Pour tester les effets du jeu du consensus, l'équipe a essayé une série de questions standard sur divers modèles de langage de taille modérée comportant de 7 milliards à 13 milliards de paramètres. Ces modèles ont systématiquement obtenu un pourcentage plus élevé de réponses correctes que les modèles qui n'avaient pas joué, même ceux de taille beaucoup plus importante, comportant jusqu'à 540 milliards de paramètres. La participation au jeu a également amélioré la cohérence interne d'un modèle.

En principe, n'importe quel LLM pourrait gagner à jouer contre lui-même, et 1 000 tours ne prendraient que quelques millisecondes sur un ordinateur portable standard. "Un avantage appréciable de l'approche globale", a déclaré Omidshafiei, "est qu'elle est très légère sur le plan informatique, n'impliquant aucune formation ni modification du modèle de langage de base."

Jouer à des jeux avec le langage

Après ce premier succès, Jacob étudie désormais d’autres moyens d’intégrer la théorie des jeux dans la recherche LLM. Les résultats préliminaires ont montré qu’un LLM déjà solide peut encore s’améliorer en jouant à un jeu différent – ​​provisoirement appelé jeu d’ensemble – avec un nombre arbitraire de modèles plus petits. Le LLM principal aurait au moins un modèle plus petit servant d’allié et au moins un modèle plus petit jouant un rôle antagoniste. Si l'on demande au LLM primaire de nommer le président des États-Unis, il obtient un point chaque fois qu'il choisit la même réponse que son allié, et il obtient également un point lorsqu'il choisit une réponse différente de celle de son adversaire. Ces interactions avec des modèles beaucoup plus petits peuvent non seulement améliorer les performances d'un LLM, suggèrent les tests, mais peuvent le faire sans formation supplémentaire ni modification des paramètres.

Et ce n'est que le début. Étant donné qu'une variété de situations peuvent être considérées comme des jeux, les outils de la théorie des jeux peuvent être mis en œuvre dans divers contextes du monde réel, a déclaré Ian Gemp , chercheur scientifique chez Google DeepMind. Dans un article de février 2024 , lui et ses collègues se sont concentrés sur des scénarios de négociation qui nécessitent des échanges plus élaborés que de simples questions et réponses. "L'objectif principal de ce projet est de rendre les modèles linguistiques plus stratégiques", a-t-il déclaré.

Un exemple dont il a parlé lors d'une conférence universitaire est le processus d'examen des articles en vue de leur acceptation par une revue ou une conférence, en particulier après que la soumission initiale ait reçu une évaluation sévère. Étant donné que les modèles linguistiques attribuent des probabilités à différentes réponses, les chercheurs peuvent construire des arbres de jeu similaires à ceux conçus pour les jeux de poker, qui tracent les choix disponibles et leurs conséquences possibles. "Une fois que vous avez fait cela, vous pouvez commencer à calculer les équilibres de Nash, puis classer un certain nombre de réfutations", a déclaré Gemp. Le modèle vous dit essentiellement : c'est ce que nous pensons que vous devriez répondre.

Grâce aux connaissances de la théorie des jeux, les modèles de langage seront capables de gérer des interactions encore plus sophistiquées, plutôt que de se limiter à des problèmes de type questions-réponses. "Le gros gain à venir réside dans les conversations plus longues", a déclaré Andreas. "La prochaine étape consiste à faire interagir une IA avec une personne, et pas seulement avec un autre modèle de langage."

Jacob considère le travail de DeepMind comme complémentaire aux jeux de consensus et d'ensemble. " À un niveau élevé, ces deux méthodes combinent des modèles de langage et la théorie des jeux ", a-t-il déclaré, même si les objectifs sont quelque peu différents. Alors que le groupe Gemp transforme des situations courantes dans un format de jeu pour aider à la prise de décision stratégique, Jacob a déclaré : " nous utilisons ce que nous savons de la théorie des jeux pour améliorer les modèles de langage dans les tâches générales. "

À l’heure actuelle, ces efforts représentent " deux branches du même arbre ", a déclaré Jacob : deux manières différentes d’améliorer le fonctionnement des modèles de langage. " Je pense personnellement  que dans un an ou deux, ces deux branches convergeront. " 

Auteur: Internet

Info: https://www.quantamagazine.org/ - Steve Nadis, 9 mai 2024

[ maïeutique machine-machine ] [ discussion IA - FLP ]

 
Commentaires: 1
Ajouté à la BD par miguel