Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats !!!!..... Lire la suite >>
Résultat(s): 1
Temps de recherche: 0.0229s

interdépendance quantique

À quelle vitesse se produit l’intrication quantique ? 

L’intrication quantique est l’un des concepts les plus fascinants de la physique moderne, mais à quelle vitesse se produit-elle ? Les résultats d’une étude révèlent que ce phénomène étrange ne se produit pas instantanément comme on pourrait le penser, mais qu’elle prend un certain temps mesuré en attosecondes.

Qu’est-ce que l’intrication quantique ?

L’intrication quantique est un phénomène dans lequel deux particules, comme des électrons ou des photons, deviennent inextricablement liées. Autrement dit, elles ne peuvent plus être décrites séparément. Si vous mesurez l’état d’une des particules, vous obtenez automatiquement des informations sur l’autre, peu importe la distance qui les sépare (même des années-lumière, en théorie).

Dans le détail, avant d’être mesurées, les particules intriquées se trouvent dans un état de superposition, ce qui signifie qu’elles peuvent exister simultanément dans plusieurs états. Lorsque l’on mesure l’une d’elles, elle choisit un état particulier et l’autre particule adopte instantanément l’état correspondant. C’est comme si elles formaient une seule entité, même lorsqu’elles sont physiquement éloignées. Ce phénomène défie notre compréhension classique de la causalité et du localisme où les événements sont supposés interagir uniquement à travers des interactions directes et locales.

Ce phénomène mystérieux, l’une des pierres angulaires de la physique quantique, a suscité l’intérêt des scientifiques pour des applications comme les ordinateurs quantiques et la cryptographie où il pourrait permettre de réaliser des calculs complexes ou de sécuriser des communications de manière infaillible.

Une nouvelle façon d’étudier l’intrication

Dans le cadre d’une étude récente, des scientifiques ont cherché à mieux comprendre comment cette intrication se produit au moment même où deux particules se lient. Au lieu de se concentrer sur la durée de l’intrication (comme c’est souvent le cas dans les recherches visant à l’appliquer à des technologies), l’équipe s’est intéressée aux premières étapes du processus.

Pour ce faire, les scientifiques ont simulé des atomes frappés par des impulsions laser extrêmement puissantes. Ces lasers provoquent l’éjection d’un électron hors de l’atome, tandis qu’un autre électron reste attaché au noyau atomique. Après l’impulsion, les deux électrons se retrouvent intriqués quantiquement : l’électron éjecté et celui qui reste sont désormais connectés, de sorte que les informations sur l’un révèlent automatiquement celles sur l’autre.

Mesurer le " temps de naissance " des électrons

Une des découvertes clés de cette étude réside dans la manière dont l’intrication se développe sur des échelles de temps ultrarapides. Grâce à une technique de mesure sophistiquée utilisant des faisceaux laser, les chercheurs ont montré qu’il est possible d’associer le moment de naissance de l’électron éjecté à l’état de celui resté dans l’atome. Autrement dit, le temps précis auquel l’électron quitte l’atome est intriqué avec l’énergie de l’électron qui reste derrière.

Ce moment de séparation n’est pas fixe : il se situe dans une superposition de différents instants possibles. L’électron ne sait pas exactement quand il a quitté l’atome, car ce moment est lié à l’état de l’autre électron. Selon l’état énergétique de l’électron restant, le moment où l’électron libre s’est envolé peut varier légèrement, mais reste mesurable sur une échelle de temps moyenne d’environ 232 attosecondes.

(image : deux particules intriquées.)

Pourquoi est-ce important ?

La capacité à observer ces événements quantiques à des échelles de temps aussi courtes permet aux scientifiques de mieux comprendre comment l’intrication se forme, et non seulement comment elle est maintenue. Cela ouvre la porte à de nouvelles recherches sur la dynamique de l’intrication et son rôle dans les phénomènes ultrarapides, comme ceux impliqués dans les réactions chimiques ou les interactions entre particules subatomiques.

Ces découvertes ont également des implications importantes pour les technologies basées sur la physique quantique. Si nous comprenons mieux comment l’intrication se développe et évolue, il devient possible d’optimiser son utilisation dans les ordinateurs quantiques, la cryptographie ou encore les communications ultra-sécurisées. 



 

Auteur: Internet

Info: https://sciencepost.fr, Brice Louvet,  3 octobre 2024,

[ chronométrie ] [   réciprocité ] [   synchronisation ] [  coordination ]

 
Commentaires: 1
Ajouté à la BD par miguel