Citation
Catégorie
Tag – étiquette
Auteur
Info
Rechercher par n'importe quelle lettre



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits... Recherche mots ou phrases tous azimuts... Outil de précision sémantique et de réflexion communautaire... Voir aussi la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats ... Lire la suite >>
Résultat(s): 15
Temps de recherche: 0.0253s

infra-monde

Le monde, les particules, la lumière, l'énergie, l'espace et le temps ne sont rien d'autre que la manifestation d'un seul type d'entité : les champs quantiques covariants.

Auteur: Rovelli Carlo

Info: solipsisme anthropique

[ physique théorique ] [ source ]

 
Commentaires: 1
Ajouté à la BD par miguel

infra-monde

Le champ quantique est un espace de potentialités infinies, où tout est interconnecté. Les expériences astrales, où l'on se sent connecté à tout l'univers, pourraient être une manifestation de cette interconnexion quantique.

Auteur: McTaggart Lynne

Info: Le Champ de la cohérence universelle (2002)

[ spéculation ]

 

Commentaires: 0

Ajouté à la BD par miguel

infra-monde

Quel mortel n’avait un jour soupçonné, sous la fine couche de poésie et de beauté, sous la luxuriante nature et le foisonnement de la vie, sous les plaisirs des sens, derrière le joli ciel bleu d’une après-midi d’été, non pas la mort, mais bien pire ?

Auteur: Lucazeau Romain

Info: La Nuit du faune

[ horrible ] [ infernal ] [ hors vie ]

 

Commentaires: 0

Ajouté à la BD par miguel

infra-monde

Nous avons essayé pendant des siècles de chercher des causes et des explications de plus en plus profondes, et soudain, lorsque nous allons au plus profond, au comportement des particules individuelles, des quanta individuels, nous découvrons que cette recherche d'une cause s'arrête là. Il n'y a pas de cause. À mes yeux, ce caractère fondamentalement insensé de l'univers n'a pas encore été réellement intégré dans notre vision du monde.

Auteur: Zeilinger Anton

Info:

[ impasse ] [ indifférencié ] [ impersonnel ] [ hasard source ] [ fondamentale acausalité ]

 

Commentaires: 0

Ajouté à la BD par miguel

infra-monde

Des chercheurs ont photographié ce que personne n’avait vu depuis 100 ans

Une avancée historique vient d’être franchie dans le monde de la physique quantique. Pour la toute première fois, des chercheurs ont réussi à capturer des images d’atomes individuels flottant librement et interagissant dans l’espace. Une prouesse technologique qui confirme, près d’un siècle plus tard, certaines des prédictions les plus fondamentales de la mécanique quantique.

L’étude révolutionnaire menée par Yao et son équipe dévoile une avancée majeure dans l’observation des gaz quantiques, offrant une plongée inédite dans les comportements microscopiques des bosons et fermions.

Méthodologie innovante

En s’affranchissant des limites des réseaux optiques traditionnels, les chercheurs ont réalisé une microscopie in situ des atomes en mouvement libre, dans un continuum spatial. Cette technique permet une résolution individuelle des particules, capturant leurs positions exactes et révélant les corrélations quantiques avec une précision sans précédent.

Révélations sur les bosons

- Condensation de Bose-Einstein
 : L’imagerie directe montre la transition vers un état condensé, où les atomes s’unissent dans un même état quantique, confirmant théoriquement ce phénomène avec une clarté expérimentale inégalée.

- Corrélations renforcées : Pour les bosons thermiques (non condensés), l’étude mesure une augmentation des interactions par paires, signature des effets collectifs quantiques.

Comportement des fermions

- Trou d’échange
 : Observation directe de la suppression des corrélations à courte distance chez les fermions, manifestation visuelle du principe d’exclusion de Pauli.

- Paires non locales : Dans les gaz de Fermi fortement interactifs en 2D, des paires d’atomes liés émergent, dont la taille et la dynamique varient continûment lors de la transition BEC-BCS – un graal de la physique ultrafroide.

Applications et perspectives

La technique ouvre la voie à l’analyse in situ de systèmes quantiques complexes :

- Thermométrie instantanée via le théorème fluctuation-dissipation, cruciale pour les études hors équilibre.

- Mesure du contact à courte portée, paramètre clé des gaz fortement corrélés.

- Exploration future des mélanges boson-fermion et des phases exotiques de la matière.

Cette percée, comparée à un " microscope quantique ", éclaire d’un jour nouveau l’intrication des particules, promettant de déchiffrer des énigmes allant des supraconducteurs à haute température à la matière neutronique





 

Auteur: Internet

Info: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.134.183402

[ sciences ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

infra-monde*

L'axion, la particule fantôme qui pourrait percer le secret de la matière noire

La matière noire reste un grand mystère en astrophysique. Pourtant, une particule appelée axion pourrait en être la clé. Des chercheurs ont réussi à recréer un équivalent en laboratoire, ouvrant la voie à sa détection dans l’univers.

Imperceptible, mais essentielle à l’équilibre de l’Univers, la matière noire reste l’un des plus grands mystères de l’astrophysique moderne. De quoi est-elle composée ? Où se cache-t-elle ? Les scientifiques ont encore du mal à se mettre d'accord. Contrairement à la matière ordinaire qui compose tout ce qui nous entoure, la matière noire ne réfléchit ni n’émet de lumière. Sa présence n’est trahie que par les effets gravitationnels qu’elle exerce sur les étoiles, les galaxies et même sur la lumière elle-même.

Les scientifiques pensent toutefois qu’une particule spécifique pourrait constituer l’un des éléments de la matière noire : l’axion. Au cours d’une expérience révolutionnaire, des chercheurs de Harvard et du King’s College ont créé une imitation assez convaincante de cette particule. La pièce manquante du puzzle pourrait bien avoir été trouvée !

Une imitation de l’axion

L’axion est une particule hypothétique, c'est-à-dire que nous ne savons pas vraiment si elle existe. Dans les années soixante-dix, l’axion est théorisé par des scientifiques pour résoudre un problème de symétrie dont souffrait la "théorie des interactions fortes", qui décrit les forces qui maintiennent les quarks ensemble pour former des protons et des neutrons.

Avec leur expérience, les chercheurs ont tenté de créer une quasi-particule d’axion. Cette quasi-particule se comporte de la même façon que l’axion dans un matériau, en d’autres termes, c’est une sorte d'imitation. Une idée qui avait émergé pour la première fois en 2010 mais était restée infructueuse jusqu’à présent. Les scientifiques de Harvard et du King's College, semblent finalement avoir réussi à en créer, en utilisant un matériau composé de fines couches de tellurure de bismuth et de manganèse. Ces substances chimiques, une fois combinées, forment un matériau unique, particulièrement utile pour créer des quasi-particules.



Un matériau aux propriétés uniques pour traquer les axions

Dans ce matériau, les champs électriques et magnétiques sont intrinsèquement liés. La quasi-particule d’axion s’est ainsi formée grâce à cette oscillation entre le magnétisme et l’électricité : un comportement semblable à celui des véritables particules d’axion. Grâce à cette expérience, les scientifiques ont désormais la preuve de l’existence d’une quasi-particule d’axion dans ce matériau. Comme l’explique Interesting Engineering, "les oscillations observées dans cette nouvelle étude fournissent un signal clair et incontestable d’axions".

Le tellurure de bismuth et de manganèse pourrait également être utilisé pour développer un détecteur capable de repérer de vraies particules d’axion dans la nature, si elles existent. En effet, lorsqu’un axion pénètre dans le champ magnétique autour de ce matériau, il pourrait se transformer en photon (une particule de lumière). Ce photon interagirait alors avec la quasi-particule d’axion, ce qui permettrait d’amplifier le signal et de rendre l’axion détectable. Ce matériau ne se contente donc pas de reproduire le comportement de l’axion : il pourrait aussi devenir un outil concret pour le détecter dans la nature.


 

 

Auteur: Internet

Info: https://www.geo.fr/, Adélie Clouet d’Orval, 21 avril 2025

[ astrophysique ]

 

Commentaires: 0

Ajouté à la BD par miguel

infra-monde

Vitesse époustouflante de l’intrication quantique mesurée pour la première fois

La récente mesure de l’intrication quantique en attosecondes pourrait transformer notre compréhension de la physique et révolutionner le cryptage. 

La physique quantique continue de nous étonner en bousculant nos idées sur le monde minuscule. Une étude toute récente a permis de mesurer, pour la première fois, la rapidité à laquelle se déclenche l’intrication quantique, un phénomène qu’on croyait jusque-là immédiat. Cette recherche, publiée dans le prestigieux journal Physical Review Letters, ouvre la porte à de belles avancées dans le domaine du cryptage et du calcul quantiques.

Mesure en attosecondes : une nouvelle ère de précision

Les prouesses technologiques actuelles nous donnent accès à des phénomènes qui semblaient inaccessibles. Les attosecondes ont un rôle très important dans cette avancée. Pour vous donner une idée, la lumière parcourt seulement l’épaisseur d’un cheveu humain en une attoseconde. Ces mesures ultra-précises permettent de suivre le mouvement des électrons et de mieux comprendre les dynamiques électroniques à l’échelle quantique.

Intrication quantique : un lien mystérieux entre particules

L’intrication quantique, c’est fascinant : deux particules semblent être connectées, même lorsqu’elles se retrouvent à des kilomètres l’une de l’autre, un principe fondamental de la téléportation quantique. Le Prof. Joachim Burgdörfer explique, " on pourrait dire que les particules n’ont pas de propriétés individuelles ; elles n’ont que des propriétés communes ". Dans cette étude, menée par Prof. Joachim Burgdörfer et Prof. Iva Březinová, on explore comment les particules deviennent intriquées grâce à des lasers à haute fréquence qui frappent des atomes, éjectant ainsi un électron et l’intriquant avec un deuxième.

Méthodes et résultats : zoom sur l’invisible

Pour mener à bien cette recherche, les scientifiques ont recours à des techniques de pointe comme le streaking attoseconde et la reconstruction du battement attoseconde par interférence de transitions à deux photons (RABBIT). Ces méthodes permettent d’accéder aux observables phares de la physique attoseconde, notamment le " temps zéro " de la photoionisation. Dans l’expérience, l’intrication entre électrons apparaît sur des échelles de temps extrêmement brèves, avec une différence moyenne d’environ 232 attosecondes entre eux.

Perspectives et applications à venir

Les retombées possibles de ces découvertes sont nombreuses. Mieux comprendre l’intrication pourrait booster les technologies de demain, notamment pour le transfert sécurisé de données via le cryptage quantique. Le Prof. Iva Březinová précise, " nous cherchons à savoir comment cette intrication se met en place dès le départ et quels phénomènes physiques s’en mêlent sur des échelles de temps ultra-courtes ". L’étude montre aussi que les comportements quantiques ne sont pas simplement immédiats, ouvrant la voie à de nouvelles techniques pour manipuler et mesurer les états intriqués.

À venir : explorer plus en profondeur

Les chercheurs ne comptent pas en rester là et préparent déjà la suite pour approfondir leurs découvertes. Ils discutent actuellement avec plusieurs équipes scientifiques pour confirmer ces intrications ultra-rapides et étudier leurs applications concrètes dans divers secteurs technologiques. Par exemple, l’étude sur l’hélium utilise une solution numérique complète de l’équation de Schrödinger dépendante du temps pour analyser la cohérence interélectronique, stimulée par un champ ultraviolet extrême.

Chaque nouvelle découverte fascinante dans cet univers fascinant alimente notre envie de percer les secrets du monde quantique.



 



 

Auteur: Internet

Info: Armées.com, 16 avril 2025

[ hautes féquences ] [ vibratoire ]

 

Commentaires: 0

Ajouté à la BD par miguel

infra-monde

Une particule fantôme qui a hanté la physique pendant des décennies vient d’être démasquée

Imaginez une particule si insaisissable qu’elle ne se désintègre qu’une fois sur 100 millions, créant l’un des phénomènes les plus rares de l’univers observable. Pendant des années, cette désintégration extraordinaire a semblé révéler l’existence d’une particule mystérieuse défiant nos théories fondamentales. Mais des chercheurs du CERN viennent de résoudre cette énigme qui tourmentait la communauté scientifique depuis des décennies, offrant une conclusion aussi surprenante qu’inattendue qui remet en perspective notre compréhension de la réalité subatomique.

La chasse à la particule la plus fuyante de l’univers

Au cœur du Grand collisionneur de hadrons, dans les profondeurs souterraines de la frontière franco-suisse, l’expérience LHCb scrute inlassablement les secrets les plus intimes de la matière. Mais parmi toutes les particules exotiques produites dans ce laboratoire titanesque, une se distingue par sa discrétion absolue : le baryon Σ+ (sigma plus).

Cette particule subatomique, composée de trois quarks comme ses cousins protons et neutrons, mène une existence éphémère mais fascinante. Sa désintégration particulière – qui produit un proton, un muon et un antimuon – représente le processus de transformation baryonique le plus rare jamais documenté par la science.

Les chiffres donnent le vertige : sur les 100 000 milliards de particules Σ+ générées lors des collisions colossales du LHC, les chercheurs n’ont réussi à capturer que 237 événements de cette désintégration ultra-rare. Une proportion si infime qu’elle défie l’imagination : moins d’une chance sur 100 millions d’observer ce phénomène quantique exceptionnel.

Un mystère vieux de plusieurs décennies

Cette histoire commence bien avant l’ère du LHC, dans les couloirs du célèbre Fermilab américain. Lorsque les physiciens ont observé pour la première fois cette désintégration extraordinaire, leurs instruments ont révélé quelque chose de profondément troublant. Au lieu d’une transformation directe, les données suggéraient un processus en deux étapes : la particule Σ+ semblait d’abord se métamorphoser en un proton et une entité complètement inconnue, avant que cette mystérieuse particule intermédiaire ne se désintègre à son tour en muon et antimuon.

Cette découverte a provoqué un véritable séisme dans la communauté scientifique. Francesco Dettori, membre de la collaboration LHCb, se souvient : " Personne n’avait prévu cela à l’époque. " La particule fantôme semblait défier le modèle standard de la physique des particules, cette théorie fondamentale qui gouverne notre compréhension de l’infiniment petit.

Des dizaines de théories ont fleuri pour expliquer cette anomalie. Certains physiciens y voyaient la signature d’une physique révolutionnaire, au-delà de tout ce que nous connaissions. Cette particule intermédiaire hypothétique est devenue un terrain de jeu privilégié pour explorer les limites de nos connaissances, suscitant recherches et spéculations pendant des années.

La révélation du CERN change tout

Mais l’expérience LHCb, avec sa précision technologique inégalée, vient de bouleverser cette compréhension. Les nouvelles données, d’une qualité jamais atteinte auparavant, révèlent une réalité beaucoup plus simple et élégante. Il n’existe aucune particule intermédiaire mystérieuse. La désintégration du Σ+ produit directement et simultanément ses trois particules finales, exactement comme le prédit le modèle standard.

Il semble vraiment que tout concorde, malheureusement si vous voulez, avec la compréhension actuelle de la physique des particules ", explique Dettori avec une pointe d’ironie. Cette conclusion, bien que scientifiquement satisfaisante, déçoit peut-être ceux qui espéraient découvrir une nouvelle physique révolutionnaire.

La réussite de cette observation tient à des caractéristiques particulières de la particule Σ+. Contrairement à la plupart de ses congénères subatomiques qui disparaissent instantanément, elle bénéficie d’une durée de vie légèrement plus longue – quelques nanosecondes précieuses qui lui permettent de parcourir plusieurs mètres avant sa désintégration. Cette longévité relative, combinée à une impulsion plus faible, a permis aux détecteurs sophistiqués de LHCb de capturer ces événements extraordinairement rares.



 

Auteur: Internet

Info: . https://sciencepost.fr, Brice Louvet, 17 août 2025

[ infime ] [ confirmation ] [ détection fine ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

infra-monde

Physique : des chercheurs observent une “pluie quantique” pour la première fois 

Des chercheurs ont récemment observé, pour la première fois, un phénomène baptisé " pluie quantique ", à la frontière entre la physique des fluides classique et la mécanique quantique. Cette découverte, réalisée grâce à une expérience sophistiquée, ouvre de nouvelles perspectives pour la compréhension fondamentale de la matière et pour le développement de technologies quantiques avancées2.

Points clés et aspects novateurs

1. Contexte physique classique et analogie


- Le phénomène de la formation de gouttelettes (ex : pluie sur une vitre) est régi par des principes classiques, notamment le principe de moindre action (Lagrange) qui conduit à la minimisation de la surface d’un liquide, et donc à la formation de gouttes sphériques via la tension superficielle.

- Cette tension superficielle est aussi responsable de l’instabilité de Plateau-Rayleigh : un jet de liquide finit par se fragmenter en gouttelettes au-delà d’une certaine longueur, phénomène fondamental en physique des fluides et crucial dans de nombreux domaines appliqués.

2. Question centrale et nouveauté expérimentale

La question fondamentale posée par les chercheurs : ces phénomènes classiques (tension superficielle, instabilité de Plateau-Rayleigh) existent-ils aussi dans le monde quantique ?

Jusqu’à présent, ces instabilités étaient connues dans les liquides classiques et observées dans l’hélium superfluide, mais jamais dans un gaz atomique ultrafroid.

3. L’expérience : création et manipulation de gouttelettes quantiques

- Les chercheurs ont utilisé un mélange gazeux de rubidium-87 et de potassium-41, refroidi à une température proche du zéro absolu, pour créer des gouttelettes quantiques, entités stabilisées uniquement par des effets quantiques.

- Grande innovation : introduction d’un laser comme " tuteur électromagnétique " permettant de canaliser ces gouttelettes et de les étirer en filaments sur une longue distance, créant ainsi une analogie structurelle avec les jets de liquide classique.

4. Observation de la " pluie quantique "

- À partir d’une distance critique, ces filaments quantiques deviennent instables et se fragmentent en plusieurs gouttelettes individuelles, reproduisant à l’échelle quantique l’instabilité de Plateau-Rayleigh observée dans les jets de liquides classiques.

Cette dynamique de rupture a été décrite à l’aide d’expériences et de simulations numériques, confirmant que l’instabilité capillaire existe aussi dans le domaine quantique.

5. Implications fondamentales et technologiques

- Cette observation prouve que certains phénomènes de la physique des fluides classiques trouvent leur équivalent dans le monde quantique, ce qui éclaire la frontière entre physique classique et quantique, encore largement inexplorée et source de nombreuses énigmes scientifiques2.

- Les gouttelettes quantiques pourraient servir de base à la création de réseaux pour des applications futures en technologies quantiques (ordinateurs, capteurs), en optique, nanotechnologies et science des matériaux.

Cette avancée offre un nouveau cadre expérimental pour manipuler et étudier la matière quantique, ouvrant la voie à de potentielles innovations dans la compréhension et l’utilisation des états exotiques de la matière.

Points particulièrement intéressants et novateurs

- Première observation de l’instabilité de Plateau-Rayleigh dans un gaz atomique quantique
 : jusqu’ici jamais observée dans ce contexte, elle était limitée aux liquides classiques et à l’hélium superfluide24.

- Utilisation du laser comme guide d’ondes pour structurer la matière quantique : cette méthode permet de manipuler la forme et la dynamique des gouttelettes quantiques de manière inédite2.

- Confirmation expérimentale d’une analogie profonde entre physique classique et quantique : la découverte montre que les lois gouvernant la fragmentation des jets de liquide s’appliquent aussi à des systèmes quantiques, ce qui rapproche deux domaines traditionnellement séparés.

- Perspectives applicatives : la possibilité de créer et de contrôler des réseaux de gouttelettes quantiques ouvre des perspectives pour les technologies de l’information quantique et la conception de nouveaux matériaux.

Conclusion

La découverte de la " pluie quantique " représente une avancée majeure dans la compréhension de la matière à l’interface du monde classique et quantique. Elle offre un nouveau terrain d’exploration pour la physique fondamentale et des applications potentielles dans les technologies quantiques, tout en illustrant la puissance des analogies entre phénomènes macroscopiques et quantiques.

 

Auteur: Internet

Info: https://www.journaldugeek.com/, 23 avril 2025, synthèse perplexity.ai

[ capillarité ] [ aqua simplex ]

 

Commentaires: 0

Ajouté à la BD par miguel

infra-monde

Des physiciens mesurent pour la première fois la géométrie quantique des électrons

Les électrons occupent une place centrale dans notre compréhension de l’univers ainsi qu’au sein des technologies modernes. Pourtant, leur comportement et leurs propriétés à l’échelle quantique restent en grande partie mystérieux. Récemment, une équipe de chercheurs du Massachusetts Institute of Technology (MIT) a réalisé une avancée majeure en mesurant pour la première fois la géométrie quantique des électrons dans un matériau solide. Mais de quoi parle-t-on précisément ? Et quelles sont les implications d’une telle percée ?

Le monde étrange des électrons

Dans l’univers quantique, les électrons ne se comportent pas comme des objets que nous connaissons dans notre vie quotidienne, mais peuvent être vus à la fois comme des particules et des ondes. Cette double nature est décrite par un outil mathématique appelé la fonction d’onde qui nous donne des informations sur l’électron : sa position, sa vitesse, et même sa forme.

Cela étant dit, imaginez maintenant une surface lisse et régulière, comme une balle de tennis : c’est une bonne image pour illustrer une forme simple d’électron. Maintenant, visualisez un ruban de Möbius, cette forme fascinante explorée par l’artiste MC Escher où le ruban semble se tordre sur lui-même de manière infinie, un peu comme un chemin qui ne revient jamais au point de départ. Cette dernière image représente les formes plus complexes que peuvent prendre certains électrons dans des matériaux spéciaux appelés matériaux quantiques.

Cependant, jusqu’à récemment, les scientifiques ne pouvaient pas mesurer directement cette géométrie quantique des électrons. Ils pouvaient seulement théoriser sur sa nature. Or, cette géométrie joue un rôle clé dans des propriétés essentielles, comme la conductivité ou le magnétisme, qui rendent certains matériaux particulièrement intéressants pour des applications de pointe.

Une quête scientifique de longue haleine

La difficulté à mesurer la géométrie quantique vient de plusieurs facteurs. Les outils traditionnels de la physique des matériaux, comme la spectroscopie ou la diffraction, permettent d’étudier l’énergie et la vitesse des électrons, mais pas leur forme dans l’espace. En outre, les matériaux étudiés, souvent des cristaux complexes, ont une structure qui complique encore davantage l’observation directe de leurs propriétés quantiques.

Malgré ces défis, l’intérêt pour la géométrie quantique n’a cessé de croître. Avec l’essor de l’informatique quantique et des dispositifs électroniques avancés, comprendre ces propriétés devient crucial. Mesurer la forme des électrons est comme découvrir une nouvelle dimension de leur comportement. Cela pourrait révolutionner la manière dont nous concevons et utilisons les matériaux dans des technologies futures.

Une méthode innovante pour une découverte majeure

Pour relever ce défi, l’équipe du MIT a utilisé une technique appelée spectroscopie de photoémission à résolution angulaire, ou ARPES. En termes simples, cette méthode consiste à bombarder un matériau avec de la lumière pour en faire sortir des électrons, puis à analyser la manière dont ils réagissent. Cela donne des informations précises sur leur énergie et leur mouvement.

Cependant, pour mesurer la géométrie quantique, il a fallu adapter la technique ARPES. Les chercheurs ont travaillé sur un matériau appelé métal kagome qui est connu pour ses propriétés quantiques exotiques. Ce matériau tire son nom de sa structure cristalline en forme de réseau de triangles semblable à un motif traditionnel japonais. Grâce à des modifications spécifiques de l’ARPES, les chercheurs ont pu non seulement observer la trajectoire des électrons, mais aussi leur forme ondulatoire unique.

Cette avancée n’aurait pas été possible sans une collaboration étroite entre théoriciens et expérimentateurs. Riccardo Comin, physicien au MIT, a même dû mener lui-même certaines expériences en Italie pendant la pandémie en raison des restrictions de déplacement de son équipe. Cette anecdote illustre à quel point la science repose parfois sur des efforts individuels dans des circonstances exceptionnelles.(Photo dessin : schéma de la configuration CD-ARPES à spin résolu.)

Les implications et applications

Cette découverte dépasse le simple cadre académique, car comprendre la géométrie des électrons ouvre des perspectives prometteuses dans plusieurs domaines technologiques. Par exemple, dans l’informatique quantique, une meilleure connaissance de la géométrie quantique pourrait permettre de concevoir des qubits plus stables et efficaces, un élément clé pour le développement de processeurs quantiques. Dans l’électronique avancée, cela pourrait conduire à des matériaux plus performants capables de transporter de l’électricité sans perte ou de fonctionner comme des capteurs ultra-sensibles.

En outre, cette méthode de mesure peut être appliquée à une grande variété de matériaux quantiques, pas seulement au métal kagome. Cela signifie que les chercheurs disposent désormais d’un outil puissant pour explorer un large éventail de matériaux aux propriétés encore inconnues. Ces travaux pourraient transformer notre manière d’aborder la conception de nouveaux dispositifs.



 

Auteur: Internet

Info: https://sciencepost.fr/,  Brice Louvet, 26 décembre 2024

[ subatomique ] [ modélisation ] [ ordre sous-jacent ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste