Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts. Aussi outil de précision sémantique et de réflexion communautaire. Voir la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après une recherche complexe. Et utilisez le nuage de corrélats !!!!.....
Lire la suite >>
Résultat(s): 6
Temps de recherche: 0.0349s
biochimie
La biologie évolue aujourd'hui en direction de la chimie. Une grande partie de ce que l'on comprend dans ce domaine est basée sur la structure des molécules et les propriétés des molécules en relation avec leur structure. Si l'on dispose de cette base, la biologie n'est pas une simple collection de faits déconnectés les uns des autres.
Auteur:
Pauling Linus Carl
Années: 1901 - 1994
Epoque – Courant religieux: Récent et Libéralisme économique
Sexe: H
Profession et précisions: chimiste et physicien
Continent – Pays: Amérique du nord - Usa
Info:
Entretien avec Neil A. Campbell, dans "Crossing the Boundaries of Science", BioScience (décembre 1986), 36, n° 11, 737.
[
microbiologie moléculaire
]
[
nanomonde
]
biochimie
La chimie est au cœur de la science. D'une part, elle traite de la biologie et fournit des explications sur les processus de la vie. D'autre part, elle se confond avec la physique et trouve des explications aux phénomènes chimiques dans les processus fondamentaux avec les particules de l'univers. La chimie relie ce qui est familier à ce qui est fondamental.
Auteur:
Atkins Peter William
Années: 1940 -
Epoque – Courant religieux: Récent et libéralisme économique
Sexe: H
Profession et précisions: chimiste, physicien, écrivain
Continent – Pays: Europe - Angleterre
Info:
Molécules (p. 2) W.H. Freeman & Company. New York, New York, États-Unis. 1987
biochimie
Grâce à la découverte de Buchner, la biologie nous débarrasse d'un autre fragment de mysticisme. La décomposition du sucre en CO2 et en alcool n'est pas plus l'effet d'un "principe vital" que la décomposition du sucre de canne par l'invertase. L'histoire de ce problème est instructive, car elle nous met en garde contre la tentation de considérer des problèmes comme hors de notre portée parce qu'ils n'ont pas encore trouvé leur solution.
Auteur:
Loeb Jacques
Années: 1859 - 1924
Epoque – Courant religieux: Industriel
Sexe: H
Profession et précisions: biologiste et physiologiste
Continent – Pays: Amérique du nord - Usa - Allemagne
Info:
La dynamique de la matière vivante (1906), 22. La fermentation alcoolique est un processus par lequel des sucres (glucides, principalement le glucose) sont transformés en alcool (éthanol)
[
démystificatrice
]
[
comprendre
]
biochimie
Si l'on veut rendre compte de la constitution atomique des composés aromatiques, on est amené à expliquer les faits suivants :
1) Tous les composés aromatiques, même les plus simples, sont relativement plus riches en carbone que les composés correspondants de la classe des corps gras.
2) Parmi les composés aromatiques, comme parmi les corps gras, il existe un grand nombre de substances homologues.
3) Les composés aromatiques les plus simples contiennent au moins six atomes de carbone.
4) Tous les dérivés des substances aromatiques présentent un certain air de famille ; ils appartiennent tous au groupe des "composés aromatiques". Dans les cas où les réactions sont plus vigoureuses, une partie du carbone est souvent éliminée, mais le produit principal contient au moins six atomes de carbone. Ces faits justifient la supposition que tous les composés aromatiques contiennent un groupe commun, ou, pourrions-nous dire, un noyau commun constitué de six atomes de carbone. À l'intérieur de ce noyau se produit une combinaison plus intime des atomes de carbone ; ils sont plus compacts et c'est la raison pour laquelle les corps aromatiques sont relativement riches en carbone. D'autres atomes de carbone peuvent s'associer à ce noyau de la même manière et selon la même loi que dans le cas du groupe des corps gras, et c'est ainsi que s'explique l'existence de composés homologues.
Auteur:
Kekulé Friedrich August
Années: 1829 - 1896
Epoque – Courant religieux: Industriel
Sexe: H
Profession et précisions: chimiste organicien
Continent – Pays: Europe - Allemagne
Info:
[
odeurs
]
[
parfums
]
biochimie
L'IA prédit la fonction des enzymes mieux que les principaux outils
Un nouvel outil d'intelligence artificielle peut prédire les fonctions des enzymes sur la base de leurs séquences d'acides aminés, même lorsque ces enzymes sont peu étudiées ou mal comprises. Selon les chercheurs, l'outil d'intelligence artificielle, baptisé CLEAN, surpasse les principaux outils de pointe en termes de précision, de fiabilité et de sensibilité. Une meilleure compréhension des enzymes et de leurs fonctions serait une aubaine pour la recherche en génomique, en chimie, en matériaux industriels, en médecine, en produits pharmaceutiques, etc.
"Tout comme ChatGPT utilise les données du langage écrit pour créer un texte prédictif, nous tirons parti du langage des protéines pour prédire leur activité", a déclaré Huimin Zhao, responsable de l'étude et professeur d'ingénierie chimique et biomoléculaire à l'université de l'Illinois Urbana-Champaign. "Presque tous les chercheurs, lorsqu'ils travaillent avec une nouvelle séquence de protéine, veulent savoir immédiatement ce que fait la protéine. En outre, lors de la fabrication de produits chimiques pour n'importe quelle application - biologie, médecine, industrie - cet outil aidera les chercheurs à identifier rapidement les enzymes appropriées nécessaires à la synthèse de produits chimiques et de matériaux".
Les chercheurs publieront leurs résultats dans la revue Science et rendront CLEAN accessible en ligne le 31 mars.
Grâce aux progrès de la génomique, de nombreuses enzymes ont été identifiées et séquencées, mais les scientifiques n'ont que peu ou pas d'informations sur le rôle de ces enzymes, a déclaré Zhao, membre de l'Institut Carl R. Woese de biologie génomique de l'Illinois.
D'autres outils informatiques tentent de prédire les fonctions des enzymes. En général, ils tentent d'attribuer un numéro de commission enzymatique - un code d'identification qui indique le type de réaction catalysée par une enzyme - en comparant une séquence interrogée avec un catalogue d'enzymes connues et en trouvant des séquences similaires. Toutefois, ces outils ne fonctionnent pas aussi bien avec les enzymes moins étudiées ou non caractérisées, ou avec les enzymes qui effectuent des tâches multiples, a déclaré Zhao.
"Nous ne sommes pas les premiers à utiliser des outils d'IA pour prédire les numéros de commission des enzymes, mais nous sommes les premiers à utiliser ce nouvel algorithme d'apprentissage profond appelé apprentissage contrastif pour prédire la fonction des enzymes. Nous avons constaté que cet algorithme fonctionne beaucoup mieux que les outils d'IA utilisés par d'autres", a déclaré M. Zhao. "Nous ne pouvons pas garantir que le produit de chacun sera correctement prédit, mais nous pouvons obtenir une plus grande précision que les deux ou trois autres méthodes."
Les chercheurs ont vérifié leur outil de manière expérimentale à l'aide d'expériences informatiques et in vitro. Ils ont constaté que non seulement l'outil pouvait prédire la fonction d'enzymes non caractérisées auparavant, mais qu'il corrigeait également les enzymes mal étiquetées par les principaux logiciels et qu'il identifiait correctement les enzymes ayant deux fonctions ou plus.
Le groupe de Zhao rend CLEAN accessible en ligne pour d'autres chercheurs cherchant à caractériser une enzyme ou à déterminer si une enzyme peut catalyser une réaction souhaitée.
"Nous espérons que cet outil sera largement utilisé par l'ensemble de la communauté des chercheurs", a déclaré M. Zhao. "Avec l'interface web, les chercheurs peuvent simplement entrer la séquence dans une boîte de recherche, comme dans un moteur de recherche, et voir les résultats.
M. Zhao a indiqué que son groupe prévoyait d'étendre l'intelligence artificielle de CLEAN à la caractérisation d'autres protéines, telles que les protéines de liaison. L'équipe espère également développer davantage les algorithmes d'apprentissage automatique afin qu'un utilisateur puisse rechercher une réaction souhaitée et que l'IA lui indique l'enzyme appropriée.
"Il existe de nombreuses protéines de liaison non caractérisées, telles que les récepteurs et les facteurs de transcription. Nous voulons également prédire leurs fonctions", a déclaré Zhao. "Nous voulons prédire les fonctions de toutes les protéines afin de connaître toutes les protéines d'une cellule et de mieux étudier ou concevoir la cellule entière pour des applications biotechnologiques ou biomédicales.
Zhao est également professeur de bio-ingénierie, de chimie et de sciences biomédicales et translationnelles au Carle Illinois College of Medicine.
Auteur:
Internet
Années: 1985 -
Epoque – Courant religieux: Récent et libéralisme économique
Sexe: R
Profession et précisions: tous
Continent – Pays: Tous
Info:
"Enzyme function prediction using contrastive learning, "30 mars 2023. Université de l'Illinois à Urbana-Champaign
[
cofacteurs
]
biochimie
La découverte d'une nouvelle activité électrique au sein des cellules pourrait modifier la façon dont les chercheurs envisagent la chimie biologique.
Le corps humain est fortement tributaire des charges électriques. Des impulsions d'énergie semblables à des éclairs traversent le cerveau et les nerfs, et la plupart des processus biologiques dépendent des ions électriques qui voyagent à travers les membranes de chaque cellule de notre corps.
Ces signaux électriques sont possibles, en partie, en raison d'un déséquilibre entre les charges électriques présentes de part et d'autre d'une membrane cellulaire. Jusqu'à récemment, les chercheurs pensaient que la membrane était un élément essentiel pour créer ce déséquilibre. Mais cette idée a été bouleversée lorsque des chercheurs de l'université de Stanford ont découvert qu'un déséquilibre similaire des charges électriques pouvait exister entre des microgouttelettes d'eau et d'air.
Aujourd'hui, des chercheurs de l'université Duke ont découvert que ces types de champs électriques existent également à l'intérieur et autour d'un autre type de structure cellulaire appelée condensats biologiques. Comme des gouttelettes d'huile flottant dans l'eau, ces structures existent en raison de différences de densité. Elles forment des compartiments à l'intérieur de la cellule sans avoir besoin de la limite physique d'une membrane.
Inspirés par des recherches antérieures démontrant que les microgouttelettes d'eau interagissant avec l'air ou des surfaces solides créent de minuscules déséquilibres électriques, les chercheurs ont décidé de voir s'il en était de même pour les petits condensats biologiques. Ils ont également voulu voir si ces déséquilibres déclenchaient des réactions d'oxygène réactif, "redox"*comme dans ces autres systèmes.
Publiée le 28 avril dans la revue Chem, leur découverte fondamentale pourrait changer la façon dont les chercheurs envisagent la chimie biologique. Elle pourrait également fournir un indice sur la manière dont les premières formes de vie sur Terre ont exploité l'énergie nécessaire à leur apparition.
"Dans un environnement prébiotique sans enzymes pour catalyser les réactions, d'où viendrait l'énergie ?" s'interroge Yifan Dai, chercheur postdoctoral à Duke travaillant dans le laboratoire d'Ashutosh Chilkoti, professeur émérite d'ingénierie biomédicale.
"Cette découverte fournit une explication plausible de l'origine de l'énergie de réaction, tout comme l'énergie potentielle communiquée à une charge ponctuelle placée dans un champ électrique", a déclaré M. Dai.
Lorsque des charges électriques passent d'un matériau à un autre, elles peuvent produire des fragments moléculaires qui peuvent s'apparier et former des radicaux hydroxyles, dont la formule chimique est OH. Ceux-ci peuvent ensuite s'apparier à nouveau pour former du peroxyde d'hydrogène (H2O2) en quantités infimes mais détectables.
"Mais les interfaces ont rarement été étudiées dans des régimes biologiques autres que la membrane cellulaire, qui est l'une des parties les plus essentielles de la biologie", a déclaré M. Dai. "Nous nous sommes donc demandé ce qui pouvait se passer à l'interface des condensats biologiques, c'est-à-dire s'il s'agissait également d'un système asymétrique.
Les cellules peuvent construire des condensats biologiques pour séparer ou piéger certaines protéines et molécules, afin d'entraver ou de favoriser leur activité. Les chercheurs commencent à peine à comprendre comment fonctionnent les condensats** et à quoi ils pourraient servir.
Le laboratoire de Chilkoti étant spécialisé dans la création de versions synthétiques de condensats biologiques naturels, les chercheurs ont pu facilement créer un banc d'essai pour leur théorie. Après avoir combiné la bonne formule d'éléments constitutifs pour créer des condensats minuscules, avec l'aide de Marco Messina, chercheur postdoctoral dans le groupe de Christopher J. Chang, les chercheurs ont pu créer un banc d'essai pour leur théorie. Christopher J. Chang à l'université de Californie-Berkeley, ils ont ajouté au système un colorant qui brille en présence d'espèces réactives de l'oxygène.
Leur intuition était la bonne. Lorsque les conditions environnementales étaient réunies, une lueur solide est apparue sur les bords des condensats, confirmant qu'un phénomène jusqu'alors inconnu était à l'œuvre. Dai s'est ensuite entretenu avec Richard Zare, professeur de chimie à Stanford (Marguerite Blake Wilbur), dont le groupe a établi le comportement électrique des gouttelettes d'eau. Zare a été enthousiasmé par le nouveau comportement des systèmes biologiques et a commencé à travailler avec le groupe sur le mécanisme sous-jacent.
"Inspirés par des travaux antérieurs sur les gouttelettes d'eau, mon étudiant diplômé, Christian Chamberlayne, et moi-même avons pensé que les mêmes principes physiques pourraient s'appliquer et favoriser la chimie redox, telle que la formation de molécules de peroxyde d'hydrogène", a déclaré M. Zare. "Ces résultats expliquent pourquoi les condensats sont si importants pour le fonctionnement des cellules.
"La plupart des travaux antérieurs sur les condensats biomoléculaires se sont concentrés sur leurs parties internes", a déclaré M. Chilkoti. "La découverte de Yifan, selon laquelle les condensats biomoléculaires semblent être universellement redox-actifs, suggère que les condensats n'ont pas simplement évolué pour remplir des fonctions biologiques spécifiques, comme on le pense généralement, mais qu'ils sont également dotés d'une fonction chimique essentielle pour les cellules.
Bien que les implications biologiques de cette réaction permanente au sein de nos cellules ne soient pas connues, Dai cite un exemple prébiotique pour illustrer la puissance de ses effets. Les centrales de nos cellules, appelées mitochondries, créent de l'énergie pour toutes les fonctions de notre vie grâce au même processus chimique de base. Mais avant que les mitochondries ou même les cellules les plus simples n'existent, il fallait que quelque chose fournisse de l'énergie pour que la toute première fonction de la vie puisse commencer à fonctionner.
Des chercheurs ont proposé que l'énergie soit fournie par des sources thermales dans les océans ou des sources d'eau chaude. D'autres ont suggéré que cette même réaction d'oxydoréduction qui se produit dans les microgouttelettes d'eau a été créée par les embruns des vagues de l'océan.
Mais pourquoi pas par des condensats ?
"La magie peut opérer lorsque les substances deviennent minuscules et que le volume interfacial devient énorme par rapport à leur volume", a déclaré M. Dai. "Je pense que les implications sont importantes pour de nombreux domaines.
Auteur:
Internet
Années: 1985 -
Epoque – Courant religieux: Récent et libéralisme économique
Sexe: R
Profession et précisions: tous
Continent – Pays: Tous
Info:
https://phys.org/news/2023-04, from Ken Kingery, Université de Duke. *réactions d'oxydoréduction. **les condensats biomoléculaires sont des compartiments cellulaires qui ne sont pas délimités par une membrane, mais qui s'auto-assemblent et se maintiennent de façon dynamique dans le contexte cellulaire
[
biophysique
]