Citation
Catégorie
Tag – étiquette
Auteur
Info
Rechercher par n'importe quelle lettre



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits... Recherche mots ou phrases tous azimuts... Outil de précision sémantique et de réflexion communautaire... Voir aussi la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats ... Lire la suite >>
Résultat(s): 5375
Temps de recherche: 0.039s

sénescence humaine

Apprendre à vieillir (avec les romanciers)

Et si l'allongement de la durée de nos vies transformait la littérature ? C'est l'hypothèse d'Alexandre Lacroix, qui montre, à la lumière des œuvres de Richard Ford, Ian McEwan et Philip Roth qu'un champ de description inédit s'ouvre depuis quelques années : l'expérience de la vieillesse et la proximité de la mort.

La parution ces jours-ci du  Paradis des fous , le dernier roman de l'écrivain américain Richard Ford (né en 1944), est l'occasion de faire le point sur une sorte de continent noir, et nouveau, en train d'émerger dans le panorama de la littérature contemporaine. En effet, l'art du roman est depuis toujours lié à l'expérience – qu'un auteur à de sa propre psychologie, des relations avec les autres ou encore des circonstances sociopolitiques dans lesquelles il évolue. Or un phénomène s'est déroulé au cours du XXe siècle, qui tend à produire ses effets littéraires depuis une quinzaine d'années seulement – ​​je veux parler de l'allongement de l'espérance de vie. Nous avons aujourd'hui un certain nombre de romanciers de premier plan qui sont entrés dans le troisième âge, tout en restant parfaitement maîtres de leur art et de leurs moyens d'évocation, de leur capacité à construire des narrations ambitieuses. Ils sont donc en mesure de nous décrire, de l'intérieur, le vieillissement et la préparation à la mort. Qu'est-ce que ces grands auteurs ont à nous révéler sur ce qui se passe en nous, lorsqu'on passe au-delà de la ligne d'ombre qui sépare la maturité du terme de l'existence ?

Ne plus surjouer la forme

À un moment donné, une sorte de voile d'illusion tombe – celui de l'éternelle jeunesse, de l'invulnérabilité que notre société a tant l'habitude de mettre en scène. On ne peut plus feindre d'avoir un corps en pleine forme, il devient nécessaire de composer avec des douleurs et des maladies chroniques. De manière cruelle,  Le Paradis des fous  (à vrai dire l'un des romans les plus glauques qu'il m'ait été donné de lire, mais on hésite à formuler cette critique, Richard Ford est susceptible, le bonhomme ayant envoyé à une romancière qui l'avait démoli un livre criblé de balles), s'ouvre sur une réunion d'anciens combattants. Le narrateur, personnage qui est le double de l'auteur et qui revient dans ses romans depuis  Un week-end dans le Michigan , paru en 1986, Frank Bascombe, retrouve ses camarades de la promotion 1963 de l'Académie militaire de Gulf Pines. Tous sont désormais des "  connards racornis  ", au fil des années Frank les a vus devenir "  taiseux, renfermés, lourdsauds, un poil agressifs et souvent déglingués  ". Mais il ya ce soir-là, en particulier, Pug Minokur, qui était la vedette de l'équipe de basket de ces apprentis  marines. Frank s'empresse d'aller lui serrer la main. Pug Minokur a un regard vitreux et émerveillé. Il est doux, docile. Il marmonne entre ses dents pourries : "  Il faut que tu comprennes. Je suis vraiment heureux  ", puis il part dans des divagations sur sa mère et sur une petite pendule qui ne marche plus. Hélas ! Carlin est gaga.

Quelques pages plus loin, Frank, 74 ans, fait son bilan de santé dans un paragraphe acerbe : "  J'avais été victime d'un mini-AVC, mais rien d'inquiétant en fin de compte (j'ai pris des statines) . Le trou microscopique détecté dans mon cœur au centre médical de Haddam n'a pas été jugé assez grave pour qu'on me donne des anticoagulants (tant mieux pour l'érection  […]  J'avais parfois des palpitations, les pieds

). qui me brûlaient. Mes ongles poussaient comme ceux d'un cadavre.  Telles étaient les inexorables réalités de ma vie, qui réduisaient les fantasmes " bulletin de santé impeccable " et " je fais jeune pour mon âge " à une vaste couillonnade. à un univers mental plombé, c'est une toute autre tonalité qu'on trouve dans les pages finales du  Leçons magistrales  (2022) de Ian McEwan (né en 1948), assurément l'un des meilleurs livres de la littérature anglaise depuis longtemps.  Leçons  est ce que les Britanniques appellent un "  Whole Life Novel  ", dans une tradition qui remonte à Thackeray ou à Thomas Hardy, c'est-à-dire un roman qui raconte la vie entière de son personnage principal. En costume Roland Baines de ses 11 ans jusqu'au-delà de 70 ans. On assiste à ses amours, ses séparations, ses échecs et ses joies. Ian McEwan a expliqué dans ses interviews que jamais aucun de ses héros n'a été aussi proche de lui, de sa propre trajectoire, même si  Leçons  ne se présente pas comme des mémoires. À la toute fin du livre (ceux qui comptent le lire peuvent sauter ce paragraphe), Roland Baines retrouve son épouse qui l'a purement et simplement abandonnée plusieurs décennies auparavant. Alissa souffre d'un cancer et a été amputée d'une jambe. Ils discutent un peu, se mettent à boire énormément, et puis ils décident de parler de leur santé. "  Toi d'abord  ", lui demande-t-elle. Il n'omet rien : "  Glaucome à angle ouvert, cataractes, lésions causées par le soleil, hypertension, douleurs thoraciques dues à une côte cassée, risques de diabète de type 2 compte tenu de son tour de taille, arthrose dans les deux genoux, hyperplasie de la prostate – bénigne, maligne, aucune idée.  " Il n'a rien de grave, n'est pas spécialement hypocondriaque, mais il se rapporte désormais à son corps comme à une vieille voiture cabossée.

Nathan Zuckerman est à l'Américain Philip Roth (1933-2018) ce que représente Frank Bascombe pour Richard Ford, une sorte de jumeau littéraire, qui lui a permis de parler de lui-même sans se situer sur le terrain de l'autofiction ni de l'autobiographie, par le truchement de la fiction. Le cycle des romans de Nathan Zuckerman a débuté avec  L'Écrivain des ombres  en 1979, avant de s'achever avec  Exit le fantôme , publié en 2007. Dans ce dernier épisode de ses aventures, pudique, d'une grande maîtrise, Nathan Zuckerman un 71 ans. L'incipit du roman est mordant, dynamique, mais aussi direct, sans fausse promesse : "  Je n'étais pas retourné à New York depuis onze ans. À part un bref séjour à Boston afin d'y subir l'ablation de la prostate pour cause de cancer, j'étais, au cours de ces onze années, à peine sorti de mon coin perdu dans les hauteurs des Berkshires… "  Plus loin, Nathan Zuckerman évoque son incontinence, ses efforts pour se garder "  propre et exempt de toute odeur  ", les différents types de "  caleçons spéciaux  " correspondant à il a recours, et ses "  petits accidents  "…

Je me rends compte que les lignes qui précèdent sont peut-être un peu éprouvantes à lire, cependant ces romanciers font leur métier : au lieu de nous présenter une version édulcorée de la réalité, d'ajouter au jeunisme et à la pensée positive ambiante, ils affrontent le négatif, ils nomment les choses. Si Richard Ford semble au fond du trou à en juger par sa prose, ce n'est pas du tout le cas de Ian McEwan ni de Philip Roth, dont les personnages continuent à porter un amour certain à la vie.

" Pensez à l'an 4000 "

Parce que, si on en vient au positif de ces histoires, ces héros aux corps affaiblis ont un immense avantage : ils ont tombé le masque, ils n'essaient plus de paraître meilleurs qu'ils ne sont , ils n'ont aucune promesse d'avenir radieux à offrir à ceux qu'ils aiment, raison pour laquelle ils sont prêts à vivre des relations humaines authentiques, délestées du souci d'arrondir les angles. Dans  Le Paradis des fous  (le titre en anglais est  Be mine , " Sois mien ", mais cela pourrait annoncer une histoire d'amour), Frank Bascombe fait un dernier voyage avec son fils de 47 ans, condamné à mourir rapidement parce qu' il est frappé par une maladie de Charcot particulièrement agressive. Bizarrement, ils veulent se rendre au mont Rushmore, où les visages des présidents américains sont sculptés dans le roc. Ils dorment dans des motels, circulent à travers des villes enneigées, il ya des congères, il fait -20 °C dehors. À un moment donné, qui donne le ton, Paul Bascombe, le fils du narrateur donc, lâche à son père : "  T'es bizarre, comme connard. " C'est une déclaration d'amour, mais sans concession. Cela résume toute la tendresse qui passe entre ces deux hommes, tandis que Frank méprise plus ou moins son fils, qu'il considère comme un raté. Paul perd ses cheveux, est trop gros, n'a jamais rien fait de sa vie et justifie ses échecs par le traumatisme du divorce de ses parents. Mais Frank refuse de se laisser culpabiliser, et le mot de "  connard  " glisse sur lui. , sur ses vieux jours, aux deux femmes qui l'ont le plus fait souffrir, Alissa, au cœur de leur journée de rétrouvailles, mais aussi une professeure qui l'a abusée sexuellement et laissée avec des déséquilibres affectifs irréparables Quant à Nathan Zuckerman. , il réunit quelques amis le jour de son anniversaire, pour ses 70 ans. Et il leur annonce : "  Mon discours sera bref. Pensez à l'un 4000 . " Les autres se regardent, s'attendent à une bonne blague. Alors il précise le trait : "  Non, non. Pensez sérieusement à l’année 4000. Imaginez-la. Dans toutes ses dimensions, dans tous ses aspects. Prenez votre temps.  […]  Eh bien, voilà l'effet que ça fait d'avoir soixante-dix ans . "

La permanence du désir

Le seul problème qui vient hanter ces personnages, c'est qu'ils ont encore des désirs intacts, des désirs d'hommes jeunes, mais qu'ils ne peuvent plus les assouvir. Ils sont sensibles aux silhouettes, au charme des femmes qu'elles croisent dans la rue. Pathétique à souhait, Frank Bascombe s'amourache d'une certaine Betty Duong Tran, une Vietnamienne qui travaille dans un salon de massage – lieu où il se rend pour la première fois de sa vie. . Elle incarne, dit-il, le fantasme de "  la lycéenne qu'on aurait dû aimer et que, pour mille raisons, on n'a pas aimée, mais qu'on rêve pourtant de pouvoir aimer encore à présent  " Nathan Zuckerman est . sensible à la "  présence sensuelle très forte " qui émane de Jamie, une jeune femme qu'il fréquente à New York – mais il trouve un vade-mecum, une astuce, il va vivre son flirt avec elle sur le plan de l'écriture, de la fiction, il va l 'imaginer. Écrivain, Zuckerman a un sérieux avantage sur Bascombe, dans ce crépuscule de la chair : il a un moyen de sublimation, la littérature Quant à Roland, il joue de malchance : à 62 ans, il décide d'épouser une vieille. amie qui a aussi été longtemps sa maîtresse, et ils se marient effectivement, mais on diagnostique aussitôt à cette dernière un cancer, et ils organisent les mois suivants en trois phases un : ils voyagent pour revoir certains lieux qui ont compté pour elle. Phase deux : elle met de l'ordre dans ses affaires et ses archives. Phase trois : elle se concentre sur sa maladie, et après cette période d'amour très intense, tant sur. le plan physique que de l'affection, Roland se retrouve veuf. Bascombe a bien essayé de renouer avec la mère de Paul, qui fut tout compte fait la femme de sa vie, mais elle était déjà très atteinte par la maladie de Parkinson, et leurs ébats se reprennent à des tentatives tragi-comiques, décrites avec une forme de délicatesse étonnante étant donnée la brutalité psychique de ce narrateur : "  Nous sommes allés jusqu'à tenter l'amour tardif dans un Best Western de Davenport, sur un canapé Davenport, avec la sensation d'être des savants en gants de laboratoire en train de déplacer des éprouvettes radioactives à l'intérieur des caissons de verre hermétiquement scellés . " Plus tard, les deux sont capables d'en rire, avec autodérision.

Se réconcilier avec l'aléatoire

Ce qui est certain, c'est que ces personnages ont encore un pied dans la vie, mais de façon fantasmatique – parce que dans la En réalité, ils doivent entreprendre une forme de réconciliation avec la mort des autres, mais aussi la leur Frank s'émeut pour son fils, mais pense très peu à sa propre finitude, ou plutôt il une manière singulière de l'évoquer. – il place désormais son existence sous le signe de l'aléatoire. Le pire va lui tomber dessus, et d'ici là, il ne change rien à son organisation de vie "  Personnellement, un sentiment modéré d'aléatoire ne m'a. jamais gêné et j'ai cherché, autant que faire se peut, à nourrir l'aléatoire. En vivant comme je le fais avec mon fils, dont l'existence est désormais hermétiquement conditionnée à la vie (et à la mort) selon la maladie de Charcot mais qui est souvent dans l'incapacité de savoir comment agir dans l'avenir immédiat, je suis souvent dans l'incapacité de savoir tout bonnement comment être, sentiment que je considère comme l'essence même de l'aléatoire, pas nécessairement négatif à dose raisonnable . "

Nathan Zuckerman s'en tire parce qu'il a le sens de l'humour, de l'autodérision. Mais celui qui se livre à la méditation la plus étonnante sur la mort, c'est sans aucun doute Roland Baines. Au soir de sa vie, alors qu'il attend chaque jour l'heure de l'apéritif et de son premier verre d'alcool avec impatience, et qu'il est souvent plongé dans un état de catatonie, il imagine (en discutant avec sa petite fille Stefanie) qu'il existe un livre, dont chaque page est une année, et qui couvre tout le XXIe siècle. Son regret à lui, c'est qu'il n'en découvrira que le quart. En fait, il n'éprouve pas un sentiment de révolte égoïste ou autocentré contre la mort, il consent à son anéantissement personnel. Mais il aimerait connaître la suite de l'Histoire de l'humanité et de ses proches, et se désole de la manquer. C'est sa curiosité qui va demeurer inassouvie. "  La mort, selon Roland, avait le défaut majeur d'être en dehors de l'Histoire. Ayant suivi cette dernière jusque-là il avait besoin de savoir comment les choses allaient tourner.  […]  Un déclenchement catastrophique de la planète serait- il éviter ? La vague mondiale de nationalisme raciste ferait-elle place à quelque chose de  plus généreux, de plus constructif ?  […  Aux yeux de Roland, le simple fait d'être encore entier le dernier jour du vingt et unième siècle, à la fin du livre, serait un triomphe  " Roland trouve de la consolation, parce que sa petite-fille lui promet. qu'elle lui lira, elle, la fin du livre, sans bien se rendre compte de ce qu'elle dit là.

Au final, ces trois ténors de la littérature contemporaine – Philip Roth, Ian McEwan et Richard Ford – ne donnent pas une image réconfortante du vieillissement. Il n'y a pas d'épiphanie, pas d'apparition de la lumière, pas d'accès au souverain bien, pas de progression vers le nirvana. Mais plutôt une forme de pénombre qui s'installe. Dans ce pénombre, paradoxalement, ce qu'on est, ce que sont les autres, les contours du monde apparaissant plus clairement que durant la vie active, qui fut obnubilée par ses luttes, par les places qu'on occupait et les objectifs à atteindre. . Et après tout, cette clairvoyance des confins correspond à une certaine conception – non apaisée – de la sagesse.

Auteur: Internet

Info: Philomag, Alexandre Lacroix, le 27 septembre 2024

[ témoignages ]

 

Commentaires: 0

Ajouté à la BD par miguel

bio-évolution

La "tectonique" des chromosomes révèle les secrets de l'évolution des premiers animaux

De grands blocs de gènes conservés au cours de centaines de millions d'années d'évolution permettent de comprendre comment les premiers chromosomes animaux sont apparus.

De nouvelles recherches ont montré que des blocs de gènes liés peuvent conserver leur intégrité et être suivis au cours de l'évolution. Cette découverte est à la base de ce que l'on appelle la tectonique des génomes (photo).

Les chromosomes, ces faisceaux d'ADN qui se mettent en scène dans le ballet mitotique de la division cellulaire, jouent un rôle de premier plan dans la vie complexe. Mais la question de savoir comment les chromosomes sont apparus et ont évolué a longtemps été d'une difficulté décourageante. C'est dû en partie au manque d'informations génomiques au niveau des chromosomes et en partie au fait que l'on soupçonne que des siècles de changements évolutifs ont fait disparaître tout indice sur cette histoire ancienne.

Dans un article paru dans Science Advances, une équipe internationale de chercheurs dirigée par Daniel Rokhsar, professeur de sciences biologiques à l'université de Californie à Berkeley, a suivi les changements survenus dans les chromosomes il y a 800 millions d'années.  Ils ont identifié 29 grands blocs de gènes qui sont restés identifiables lors de leur passage dans trois des plus anciennes subdivisions de la vie animale multicellulaire. En utilisant ces blocs comme marqueurs, les scientifiques ont pu déterminer comment les chromosomes se sont fusionnés et recombinés au fur et à mesure que ces premiers groupes d'animaux devenaient distincts.

Les chercheurs appellent cette approche "tectonique du génome". De la même manière que les géologues utilisent leur compréhension de la tectonique des plaques pour comprendre l'apparition et le mouvement des continents, ces biologistes reconstituent comment diverses duplications, fusions et translocations génomiques ont créé les chromosomes que nous voyons aujourd'hui.

Ces travaux annoncent une nouvelle ère de la génomique comparative : Auparavant, les chercheurs étudiaient des collections de gènes de différentes lignées et décrivaient les changements une paire de bases à la fois. Aujourd'hui, grâce à la multiplication des assemblages de chromosomes, les chercheurs peuvent retracer l'évolution de chromosomes entiers jusqu'à leur origine. Ils peuvent ensuite utiliser ces informations pour faire des prédictions statistiques et tester rigoureusement des hypothèses sur la façon dont les groupes d'organismes sont liés.

Il y a deux ans, à l'aide de méthodes novatrices similaires, M. Rokhsar et ses collègues ont résolu un mystère de longue date concernant la chronologie des duplications du génome qui ont accompagné l'apparition des vertébrés à mâchoires. Mais l'importance de cette approche n'est pas purement rétrospective. En faisant ces découvertes, les chercheurs apprennent les règles algébriques simples qui régissent ce qui se passe lorsque les chromosomes échangent des parties d'eux-mêmes. Ces informations peuvent orienter les futures études génomiques et aider les biologistes à prédire ce qu'ils trouveront dans les génomes des espèces qui n'ont pas encore été séquencées.

"Nous commençons à avoir une vision plus large de l'évolution des chromosomes dans l'arbre de la vie", a déclaré Paulyn Cartwright, professeur d'écologie et de biologie évolutive à l'université du Kansas. Selon elle, les scientifiques peuvent désormais tirer des conclusions sur le contenu des chromosomes des tout premiers animaux. Ils peuvent également examiner comment les différents contenus des chromosomes ont changé ou sont restés les mêmes - et pourquoi - à mesure que les animaux se sont diversifiés. "Nous ne pouvions vraiment pas faire cela avant de disposer de ces génomes de haute qualité". 

Ce que partagent les anciens génomes

Dans l'étude publiée aujourd'hui, Rokhsar et une grande équipe internationale de collaborateurs ont produit le premier assemblage de haute qualité, au niveau des chromosomes, du génome de l'hydre, qu'ils décrivent comme un modèle de "vénérable cnidaire". En le comparant à d'autres génomes animaux disponibles, ils ont découvert des groupes de gènes liés hautement conservés. Bien que l'ordre des gènes au sein d'un bloc soit souvent modifié, les blocs eux-mêmes sont restés stables sur de longues périodes d'évolution.

Lorsque les scientifiques ont commencé à séquencer les génomes animaux il y a une vingtaine d'années, beaucoup d'entre eux n'étaient pas convaincus que des groupes de gènes liés entre eux sur les chromosomes pouvaient rester stables et reconnaissables au cours des éons, et encore moins qu'il serait possible de suivre le passage de ces blocs de gènes à travers pratiquement toutes les lignées animales.

Les animaux ont divergé de leurs parents unicellulaires il y a 600 ou 700 millions d'années, et "être capable de reconnaître les morceaux de chromosomes qui sont encore conservés après cette période de temps est étonnant", a déclaré Jordi Paps, un biologiste de l'évolution à l'Université de Bristol au Royaume-Uni.

"Avant de disposer de ces données sur les chromosomes entiers, nous examinions de petits fragments de chromosomes et nous observions de nombreux réarrangements", a déclaré M. Cartwright. "Nous supposions donc qu'il n'y avait pas de conservation, car les gènes eux-mêmes dans une région du chromosome changent de position assez fréquemment."

Pourtant, bien que l'ordre des gènes soit fréquemment remanié le long des chromosomes, Rokhsar a eu l'intuition, grâce à ses études antérieures sur les génomes animaux, qu'il y avait une relative stabilité dans les gènes apparaissant ensemble. "Si vous comparez une anémone de mer ou une éponge à un être humain, le fait que les gènes se trouvent sur le même morceau d'ADN semble être conservé", explique Rokhsar. "Et le modèle suggérait que des chromosomes entiers étaient également conservés". Mais cette notion n'a pu être testée que récemment, lorsque suffisamment d'informations génomiques à l'échelle du chromosome sur divers groupes d'animaux sont devenues disponibles.

Inertie génomique

Mais pourquoi des blocs de gènes restent-ils liés entre eux ? Selon Harris Lewin, professeur d'évolution et d'écologie à l'université de Californie à Davis, qui étudie l'évolution des génomes de mammifères, une des explications de ce phénomène, appelé synténie, est liée à la fonction des gènes. Il peut être plus efficace pour les gènes qui fonctionnent ensemble d'être physiquement situés ensemble ; ainsi, lorsqu'une cellule a besoin de transcrire des gènes, elle n'a pas à coordonner la transcription à partir de plusieurs endroits sur différents chromosomes. 

Ceci explique probablement la conservation de certains ensembles de gènes dont l'agencement est crucial : les gènes Hox qui établissent les plans corporels des animaux, par exemple, doivent être placés dans un ordre spécifique pour établir correctement le schéma corporel. Mais ces gènes étroitement liés se trouvent dans un morceau d'ADN relativement court. M. Rokhsar dit qu'il ne connaît aucune corrélation fonctionnelle s'étendant sur un chromosome entier qui pourrait expliquer leurs résultats.

(Ici une image décrit les différents types de fusion de chromosomes et l'effet de chacun sur l'ordre des gènes qu'ils contiennent.)

C'est pourquoi Rokhsar est sceptique quant à une explication fonctionnelle. Elle est séduisante ("Ce serait le résultat le plus cool, d'une certaine manière", dit-il) mais peut-être aussi inutile car, à moins qu'un réarrangement chromosomique ne présente un avantage fonctionnel important, il est intrinsèquement difficile pour ce réarrangement de se propager. Et les réarrangements ne sont généralement pas avantageux : Au cours de la méiose et de la formation des gamètes, tous les chromosomes doivent s'apparier avec un partenaire correspondant. Sans partenaire, un chromosome de taille inhabituelle ne pourra pas faire partie d'un gamète viable, et il a donc peu de chances de se retrouver dans la génération suivante. De petites mutations qui remanient l'ordre des gènes à l'intérieur des chromosomes peuvent encore se produire ("Il y a probablement une petite marge d'erreur en termes de réarrangements mineurs, de sorte qu'ils peuvent encore se reconnaître", a déclaré Cartwright). Mais les chromosomes brisés ou fusionnés ont tendance à être des impasses.

Peut-être que dans des groupes comme les mammifères, qui ont des populations de petite taille, un réarrangement pourrait se propager de façon aléatoire par ce qu'on appelle la dérive génétique, suggère Rokhsar. Mais dans les grandes populations qui se mélangent librement, comme celles des invertébrés marins qui pondent des centaines ou des milliers d'œufs, "il est vraiment difficile pour l'un des nouveaux réarrangements de s'imposer", a-t-il déclaré. "Ce n'est pas qu'ils ne sont pas tentés. C'est juste qu'ils ne parviennent jamais à s'imposer dans l'évolution."

Par conséquent, les gènes ont tendance à rester bloqués sur un seul chromosome. "Les processus par lesquels ils se déplacent sont tout simplement lents, sur une échelle de 500 millions d'années", déclare Rokhsar. "Même s'il s'est écoulé énormément de temps, ce n'est toujours pas assez long pour qu'ils puissent se développer".

( une image avec affichage de données montre comment des blocs de gènes ont eu tendance à rester ensemble même lorsqu'ils se déplaçaient vers différents chromosomes dans l'évolution de cinq premières espèces animales.)

L'équipe de Rokhsar a toutefois constaté que lorsque ces rares fusions de chromosomes se produisaient, elles laissaient une signature claire : Après une fusion, les gènes des deux blocs s'entremêlent et sont réorganisés car des "mutations d'inversion" s'y sont accumulées au fil du temps. En conséquence, les gènes des deux blocs se sont mélangés comme du lait versé dans une tasse de thé, pour ne plus jamais être séparés. "Il y a un mouvement entropique vers le mélange qui ne peut être annulé", affirme Rokhsar.

Et parce que les processus de fusion, de mélange et de duplication de blocs génétiques sont si rares, irréversibles et spécifiques, ils sont traçables : Il est très improbable qu'un chromosome se fracture deux fois au même endroit, puis fusionne et se mélange avec un autre bloc génétique de la même manière.

Les signatures de ces événements dans les chromosomes représentent donc un nouvel ensemble de caractéristiques dérivées que les biologistes peuvent utiliser pour tester des hypothèses sur la façon dont les espèces sont liées. Si deux lignées partagent un mélange de deux blocs de gènes, le mélange s'est très probablement produit chez leur ancêtre commun. Si des lignées ont deux ensembles de mêmes blocs de gènes, une duplication du génome a probablement eu lieu chez leur ancêtre commun. Cela fait des syntéries un "outil très, très puissant", a déclaré Oleg Simakov, génomiste à l'université de Vienne et premier auteur des articles. 

Empreintes digitales d'événements évolutifs

"L'un des aspects que je préfère dans notre étude est que nous faisons des prédictions sur ce à quoi il faut s'attendre au sein des génomes qui n'ont pas encore été séquencés", a écrit Rokhsar dans un courriel adressé à Quanta. Par exemple, son équipe a découvert que divers invertébrés classés comme spiraliens partagent tous quatre schémas spécifiques de fusion avec mélange, ce qui implique que les événements de fusion se sont produits chez leur ancêtre commun. "Il s'ensuit que tous les spiraliens devraient présenter ces schémas de fusion avec mélange de modèles", écrit Rokhsar. "Si l'on trouve ne serait-ce qu'un seul spiralien dépourvu de ces motifs, alors l'hypothèse peut être rejetée !".

Et d'ajouter : "On n'a pas souvent l'occasion de faire ce genre de grandes déclarations sur l'histoire de l'évolution."

Dans leur nouvel article Science Advances, Simakov, Rokhsar et leurs collègues ont utilisé l'approche tectonique pour en savoir plus sur l'émergence de certains des premiers groupes d'animaux il y a environ 800 millions d'années. En examinant le large éventail de vie animale représenté par les éponges, les cnidaires (tels que les hydres, les méduses et les coraux) et les bilatériens (animaux à symétrie bilatérale), les chercheurs ont trouvé 27 blocs de gènes hautement conservés parmi leurs chromosomes.

Ensuite, en utilisant les règles de fusion chromosomique et génétique qu'ils avaient identifiées, les chercheurs ont reconstitué les événements de mélange au niveau des chromosomes qui ont accompagné l'évolution de ces trois lignées à partir d'un ancêtre commun. Ils ont montré que les chromosomes des éponges, des cnidaires et des bilatériens représentent tous des manières distinctes de combiner des éléments du génome ancestral.

(Pour expliquer les 2 paragraphes précédents une image avec 3 schémas montre la fusion des chromosomes au début de l'évolution pou arriver au 27 blocs de gènes)

Une découverte stimulante qui a été faite est que certains des blocs de gènes liés semblent également présents dans les génomes de certaines créatures unicellulaires comme les choanoflagellés, les plus proches parents des animaux multicellulaires. Chez les animaux multicellulaires, l'un de ces blocs contient un ensemble diversifié de gènes homéobox qui guident le développement de la structure générale de leur corps. Cela suggère que l'un des tout premiers événements de l'émergence des animaux multicellulaires a été l'expansion et la diversification de ces gènes importants. "Ces anciennes unités de liaison fournissent un cadre pour comprendre l'évolution des gènes et des génomes chez les animaux", notent les scientifiques dans leur article.

Leur approche permet de distinguer de subtiles et importantes différences au niveau des événements chromosomiques. Par exemple, dans leur article de 2020, les chercheurs ont déduit que le génome des vertébrés avait subi une duplication au cours de la période cambrienne, avant que l'évolution ne sépare les poissons sans mâchoire des poissons avec mâchoire. Ils ont ensuite trouvé des preuves que deux poissons à mâchoires se sont hybridés plus tard et ont subi une deuxième duplication de leur génome ; cet hybride est devenu l'ancêtre de tous les poissons osseux.

John Postlethwait, génomicien à l'université de l'Oregon, souligne l'importance de la méthode d'analyse de l'équipe. "Ils ont adopté une approche statistique, et ne se sont pas contentés de dire : "Eh bien, il me semble que telle et telle chose s'est produite", a-t-il déclaré. "C'est une partie vraiment importante de leur méthodologie, non seulement parce qu'ils avaient accès à des génomes de meilleure qualité, mais aussi parce qu'ils ont adopté cette approche quantitative et qu'ils ont réellement testé ces hypothèses."

Ces études ne marquent que le début de ce que la tectonique des génomes et  ce que les syntagmes génétiques peuvent nous apprendre. Dans des prépublications récentes partagées sur biorxiv.org, l'équipe de Rokhsar a reconstitué l'évolution des chromosomes de grenouilles, et une équipe européenne s'est penchée sur l'évolution des chromosomes des poissons téléostéens. Une étude parue dans Current Biology a révélé une "inversion massive du génome" à l'origine de la coexistence de formes divergentes chez la caille commune, ce qui laisse entrevoir certaines des conséquences fonctionnelles du réarrangement des chromosomes.

L'hypothèse selon laquelle le mélange de ces groupes de liaisons génétiques pourrait être lié à la diversification des lignées et à l'innovation évolutive au cours des 500 derniers millions d'années est alléchante. Les réarrangements chromosomiques peuvent conduire à des incompatibilités d'accouplement qui pourraient provoquer la scission en deux d'une lignée. Il est également possible qu'un gène atterrissant dans un nouveau voisinage ait conduit à des innovations dans la régulation des gènes. "Peut-être que ce fut l'une des forces motrices de la diversification des animaux", a déclaré Simakov.

"C'est la grande question", a déclaré Lewin. "Il s'agit de véritables bouleversements tectoniques dans le génome, et il est peu probable qu'ils soient sans conséquence".

Auteur: Internet

Info: https://www.quantamagazine.org/secrets-of-early-animal-evolution-revealed-by-chromosome-tectonics-20220202.Viviane Callier 2 février 2022

[ méta-moteurs ] [ néo-phylogénie ]

 

Commentaires: 0

Ajouté à la BD par miguel

symphonie des équations

Des " murmurations " de courbe elliptique découvertes grâce à l'IA prennent leur envol

Les mathématiciens s’efforcent d’expliquer pleinement les comportements inhabituels découverts grâce à l’intelligence artificielle.

(photo - sous le bon angle les courbes elliptiques peuvent se rassembler comme les grands essaims d'oiseaux.)

Les courbes elliptiques font partie des objets les plus séduisants des mathématiques modernes. Elle ne semblent pas compliqués, mais  forment une voie express entre les mathématiques que beaucoup de gens apprennent au lycée et les mathématiques de recherche dans leur forme la plus abstruse. Elles étaient au cœur de la célèbre preuve du dernier théorème de Fermat réalisée par Andrew Wiles dans les années 1990. Ce sont des outils clés de la cryptographie moderne. Et en 2000, le Clay Mathematics Institute a désigné une conjecture sur les statistiques des courbes elliptiques comme l'un des sept " problèmes du prix du millénaire ", chacun d'entre eux étant récompensé d'un million de dollars pour sa solution. Cette hypothèse, formulée pour la première fois par Bryan Birch et Peter Swinnerton-Dyer dans les années 1960, n'a toujours pas été prouvée.

Comprendre les courbes elliptiques est une entreprise aux enjeux élevés qui est au cœur des mathématiques. Ainsi, en 2022, lorsqu’une collaboration transatlantique a utilisé des techniques statistiques et l’intelligence artificielle pour découvrir des modèles complètement inattendus dans les courbes elliptiques, cela a été une contribution bienvenue, bien qu’inattendue. "Ce n'était qu'une question de temps avant que l'apprentissage automatique arrive à notre porte avec quelque chose d'intéressant", a déclaré Peter Sarnak , mathématicien à l'Institute for Advanced Study et à l'Université de Princeton. Au départ, personne ne pouvait expliquer pourquoi les modèles nouvellement découverts existaient. Depuis lors, dans une série d’articles récents, les mathématiciens ont commencé à élucider les raisons derrière ces modèles, surnommés " murmures " en raison de leur ressemblance avec les formes fluides des étourneaux en troupeaux, et ont commencé à prouver qu’ils ne doivent pas se produire uniquement dans des cas particuliers. exemples examinés en 2022, mais dans les courbes elliptiques plus généralement.

L'importance d'être elliptique

Pour comprendre ces modèles, il faut jeter les bases de ce que sont les courbes elliptiques et de la façon dont les mathématiciens les catégorisent.

Une courbe elliptique relie le carré d'une variable, communément écrite comme y , à la troisième puissance d'une autre, communément écrite comme x : 2  =  3  + Ax + B , pour une paire de nombres A et B , tant que A et B remplissent quelques conditions simples. Cette équation définit une courbe qui peut être représentée graphiquement sur le plan, comme indiqué ci-dessous. (Photo : malgré la similitude des noms, une ellipse n'est pas une courbe elliptique.)

Introduction

Bien qu’elles semblent simples, les courbes elliptiques s’avèrent être des outils incroyablement puissants pour les théoriciens des nombres – les mathématiciens qui recherchent des modèles dans les nombres entiers. Au lieu de laisser les variables x et y s'étendre sur tous les nombres, les mathématiciens aiment les limiter à différents systèmes numériques, ce qu'ils appellent définir une courbe " sur " un système numérique donné. Les courbes elliptiques limitées aux nombres rationnels – nombres qui peuvent être écrits sous forme de fractions – sont particulièrement utiles. "Les courbes elliptiques sur les nombres réels ou complexes sont assez ennuyeuses", a déclaré Sarnak. "Seuls les nombres rationnels sont profonds."

Voici une façon qui est vraie. Si vous tracez une ligne droite entre deux points rationnels sur une courbe elliptique, l’endroit où cette ligne coupe à nouveau la courbe sera également rationnel. Vous pouvez utiliser ce fait pour définir " addition " dans une courbe elliptique, comme indiqué ci-dessous. 

(Photo -  Tracez une ligne entre P et Q . Cette ligne coupera la courbe en un troisième point, R . (Les mathématiciens ont une astuce spéciale pour gérer le cas où la ligne ne coupe pas la courbe en ajoutant un " point à l'infini ".) La réflexion de R sur l' axe des x est votre somme P + Q . Avec cette opération d'addition, toutes les solutions de la courbe forment un objet mathématique appelé groupe.)

Les mathématiciens l'utilisent pour définir le " rang " d'une courbe. Le rang d'une courbe est lié au nombre de solutions rationnelles dont elle dispose. Les courbes de rang 0 ont un nombre fini de solutions. Les courbes de rang supérieur ont un nombre infini de solutions dont la relation les unes avec les autres à l'aide de l'opération d'addition est décrite par le rang.

Les classements (rankings) ne sont pas bien compris ; les mathématiciens n'ont pas toujours le moyen de les calculer et ne savent pas quelle taille ils peuvent atteindre. (Le plus grand rang exact connu pour une courbe spécifique est 20.) Des courbes d'apparence similaire peuvent avoir des rangs complètement différents.

Les courbes elliptiques ont aussi beaucoup à voir avec les nombres premiers, qui ne sont divisibles que par 1 et par eux-mêmes. En particulier, les mathématiciens examinent les courbes sur des corps finis – des systèmes d’arithmétique cyclique définis pour chaque nombre premier. Un corps fini est comme une horloge dont le nombre d'heures est égal au nombre premier : si vous continuez à compter vers le haut, les nombres recommencent. Dans le corps fini de 7, par exemple, 5 plus 2 est égal à zéro et 5 plus 3 est égal à 1.

(Photo : Les motifs formés par des milliers de courbes elliptiques présentent une similitude frappante avec les murmures des étourneaux.)

Une courbe elliptique est associée à une séquence de nombres, appelée a p , qui se rapporte au nombre de solutions qu'il existe à la courbe dans le corps fini défini par le nombre premier p . Un p plus petit signifie plus de solutions ; un p plus grand signifie moins de solutions. Bien que le rang soit difficile à calculer, la séquence a p est beaucoup plus simple.

Sur la base de nombreux calculs effectués sur l'un des tout premiers ordinateurs, Birch et Swinnerton-Dyer ont conjecturé une relation entre le rang d'une courbe elliptique et la séquence a p . Quiconque peut prouver qu’il avait raison gagnera un million de dollars et l’immortalité mathématique.

Un modèle surprise émerge

Après le début de la pandémie, Yang-Hui He , chercheur au London Institute for Mathematical Sciences, a décidé de relever de nouveaux défis. Il avait étudié la physique à l'université et avait obtenu son doctorat en physique mathématique du Massachusetts Institute of Technology. Mais il s'intéressait de plus en plus à la théorie des nombres et, étant donné les capacités croissantes de l'intelligence artificielle, il pensait essayer d'utiliser l'IA comme un outil permettant de trouver des modèles inattendus dans les nombres. (Il avait déjà utilisé l'apprentissage automatique pour classifier les variétés de Calabi-Yau , des structures mathématiques largement utilisées en théorie des cordes.

(Photo ) Lorsque Kyu-Hwan Lee (à gauche) et Thomas Oliver (au centre) ont commencé à travailler avec Yang-Hui He (à droite) pour utiliser l'intelligence artificielle afin de trouver des modèles mathématiques, ils s'attendaient à ce que ce soit une plaisanterie plutôt qu'un effort qui mènerait à de nouveaux découvertes. De gauche à droite : Grace Lee ; Sophie Olivier ; gracieuseté de Yang-Hui He.

En août 2020, alors que la pandémie s'aggravait, l'Université de Nottingham l'a accueilli pour une conférence en ligne . Il était pessimiste quant à ses progrès et quant à la possibilité même d’utiliser l’apprentissage automatique pour découvrir de nouvelles mathématiques. "Son récit était que la théorie des nombres était difficile parce qu'on ne pouvait pas apprendre automatiquement des choses en théorie des nombres", a déclaré Thomas Oliver , un mathématicien de l'Université de Westminster, présent dans le public. Comme il se souvient : " Je n'ai rien trouvé parce que je n'étais pas un expert. Je n’utilisais même pas les bons éléments pour examiner cela."

Oliver et Kyu-Hwan Lee , mathématicien à l'Université du Connecticut, ont commencé à travailler avec He. "Nous avons décidé de faire cela simplement pour apprendre ce qu'était l'apprentissage automatique, plutôt que pour étudier sérieusement les mathématiques", a déclaré Oliver. "Mais nous avons rapidement découvert qu'il était possible d'apprendre beaucoup de choses par machine."

Oliver et Lee lui ont suggéré d'appliquer ses techniques pour examiner les fonctions L , des séries infinies étroitement liées aux courbes elliptiques à travers la séquence a p . Ils pourraient utiliser une base de données en ligne de courbes elliptiques et de leurs fonctions L associées , appelée LMFDB , pour former leurs classificateurs d'apprentissage automatique. À l’époque, la base de données contenait un peu plus de 3 millions de courbes elliptiques sur les rationnels. En octobre 2020, ils avaient publié un article utilisant les informations glanées à partir des fonctions L pour prédire une propriété particulière des courbes elliptiques. En novembre, ils ont partagé un autre article utilisant l’apprentissage automatique pour classer d’autres objets en théorie des nombres. En décembre, ils étaient capables de prédire les rangs des courbes elliptiques avec une grande précision.

Mais ils ne savaient pas vraiment pourquoi leurs algorithmes d’apprentissage automatique fonctionnaient si bien. Lee a demandé à son étudiant de premier cycle Alexey Pozdnyakov de voir s'il pouvait comprendre ce qui se passait. En l’occurrence, la LMFDB trie les courbes elliptiques en fonction d’une quantité appelée conducteur, qui résume les informations sur les nombres premiers pour lesquels une courbe ne se comporte pas correctement. Pozdnyakov a donc essayé d’examiner simultanément un grand nombre de courbes comportant des conducteurs similaires – disons toutes les courbes comportant entre 7 500 et 10 000 conducteurs.

Cela représente environ 10 000 courbes au total. Environ la moitié d'entre eux avaient le rang 0 et l'autre moitié le rang 1. (Les rangs supérieurs sont extrêmement rares.) Il a ensuite fait la moyenne des valeurs de a p pour toutes les courbes de rang 0, a fait la moyenne séparément de a p pour toutes les courbes de rang 1 et a tracé la résultats. Les deux ensembles de points formaient deux vagues distinctes et facilement discernables. C’est pourquoi les classificateurs d’apprentissage automatique ont été capables de déterminer correctement le rang de courbes particulières.

" Au début, j'étais simplement heureux d'avoir terminé ma mission", a déclaré Pozdnyakov. "Mais Kyu-Hwan a immédiatement reconnu que ce schéma était surprenant, et c'est à ce moment-là qu'il est devenu vraiment excitant."

Lee et Oliver étaient captivés. "Alexey nous a montré la photo et j'ai dit qu'elle ressemblait à ce que font les oiseaux", a déclaré Oliver. "Et puis Kyu-Hwan l'a recherché et a dit que cela s'appelait une murmuration, puis Yang a dit que nous devrions appeler le journal ' Murmurations de courbes elliptiques '."

Ils ont mis en ligne leur article en avril 2022 et l’ont transmis à une poignée d’autres mathématiciens, s’attendant nerveusement à se faire dire que leur soi-disant " découverte " était bien connue. Oliver a déclaré que la relation était si visible qu'elle aurait dû être remarquée depuis longtemps.

Presque immédiatement, la prépublication a suscité l'intérêt, en particulier de la part d' Andrew Sutherland , chercheur scientifique au MIT et l'un des rédacteurs en chef de la LMFDB. Sutherland s'est rendu compte que 3 millions de courbes elliptiques n'étaient pas suffisantes pour atteindre ses objectifs. Il voulait examiner des gammes de conducteurs beaucoup plus larges pour voir à quel point les murmures étaient robustes. Il a extrait des données d’un autre immense référentiel d’environ 150 millions de courbes elliptiques. Toujours insatisfait, il a ensuite extrait les données d'un autre référentiel contenant 300 millions de courbes.

"Mais même cela ne suffisait pas, j'ai donc calculé un nouvel ensemble de données de plus d'un milliard de courbes elliptiques, et c'est ce que j'ai utilisé pour calculer les images à très haute résolution", a déclaré Sutherland. Les murmures indiquaient s'il effectuait en moyenne plus de 15 000 courbes elliptiques à la fois ou un million à la fois. La forme est restée la même alors qu’il observait les courbes sur des nombres premiers de plus en plus grands, un phénomène appelé invariance d’échelle. Sutherland s'est également rendu compte que les murmures ne sont pas propres aux courbes elliptiques, mais apparaissent également dans des fonctions L plus générales . Il a écrit une lettre résumant ses découvertes et l'a envoyée à Sarnak et Michael Rubinstein de l'Université de Waterloo.

"S'il existe une explication connue, j'espère que vous la connaîtrez", a écrit Sutherland.

Ils ne l'ont pas fait.

Expliquer le modèle

Lee, He et Oliver ont organisé un atelier sur les murmurations en août 2023 à l'Institut de recherche informatique et expérimentale en mathématiques (ICERM) de l'Université Brown. Sarnak et Rubinstein sont venus, tout comme l'étudiante de Sarnak, Nina Zubrilina .

LA THÉORIE DU NOMBRE

Zubrilina a présenté ses recherches sur les modèles de murmuration dans des formes modulaires , des fonctions complexes spéciales qui, comme les courbes elliptiques, sont associées à des fonctions L. Dans les formes modulaires dotées de grands conducteurs, les murmurations convergent vers une courbe nettement définie, plutôt que de former un motif perceptible mais dispersé. Dans un article publié le 11 octobre 2023, Zubrilina a prouvé que ce type de murmuration suit une formule explicite qu'elle a découverte.

" La grande réussite de Nina est qu'elle lui a donné une formule pour cela ; Je l’appelle la formule de densité de murmuration Zubrilina ", a déclaré Sarnak. "En utilisant des mathématiques très sophistiquées, elle a prouvé une formule exacte qui correspond parfaitement aux données."

Sa formule est compliquée, mais Sarnak la salue comme un nouveau type de fonction important, comparable aux fonctions d'Airy qui définissent des solutions aux équations différentielles utilisées dans divers contextes en physique, allant de l'optique à la mécanique quantique.

Bien que la formule de Zubrilina ait été la première, d'autres ont suivi. "Chaque semaine maintenant, un nouvel article sort", a déclaré Sarnak, "utilisant principalement les outils de Zubrilina, expliquant d'autres aspects des murmurations."

(Photo - Nina Zubrilina, qui est sur le point de terminer son doctorat à Princeton, a prouvé une formule qui explique les schémas de murmuration.)

Jonathan Bober , Andrew Booker et Min Lee de l'Université de Bristol, ainsi que David Lowry-Duda de l'ICERM, ont prouvé l'existence d'un type différent de murmuration sous des formes modulaires dans un autre article d'octobre . Et Kyu-Hwan Lee, Oliver et Pozdnyakov ont prouvé l'existence de murmures dans des objets appelés caractères de Dirichlet qui sont étroitement liés aux fonctions L.

Sutherland a été impressionné par la dose considérable de chance qui a conduit à la découverte des murmurations. Si les données de la courbe elliptique n'avaient pas été classées par conducteur, les murmures auraient disparu. "Ils ont eu la chance de récupérer les données de la LMFDB, qui étaient pré-triées selon le chef d'orchestre", a-t-il déclaré. " C'est ce qui relie une courbe elliptique à la forme modulaire correspondante, mais ce n'est pas du tout évident. … Deux courbes dont les équations semblent très similaires peuvent avoir des conducteurs très différents. Par exemple, Sutherland a noté que 2 = 3 – 11 x + 6 a un conducteur 17, mais en retournant le signe moins en signe plus, 2 = 3  + 11 x + 6 a un conducteur 100 736."

Même alors, les murmures n'ont été découverts qu'en raison de l'inexpérience de Pozdniakov. "Je ne pense pas que nous l'aurions trouvé sans lui", a déclaré Oliver, "parce que les experts normalisent traditionnellement a p pour avoir une valeur absolue de 1. Mais il ne les a pas normalisés… donc les oscillations étaient très importantes et visibles."

Les modèles statistiques que les algorithmes d’IA utilisent pour trier les courbes elliptiques par rang existent dans un espace de paramètres comportant des centaines de dimensions – trop nombreuses pour que les gens puissent les trier dans leur esprit, et encore moins les visualiser, a noté Oliver. Mais même si l’apprentissage automatique a découvert les oscillations cachées, " ce n’est que plus tard que nous avons compris qu’il s’agissait de murmures ".



 

Auteur: Internet

Info: Paul Chaikin pour Quanta Magazine, 5 mars 2024 - https://www.quantamagazine.org/elliptic-curve-murmurations-found-with-ai-take-flight-20240305/?mc_cid=797b7d1aad&mc_eid=78bedba296

[ résonance des algorithmes ] [ statistiques en mouvement ] [ chants des fractales ] [ bancs de poissons ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-animal

CAPACITÉS COGNITIVES DU DAUPHIN

Au-delà de leur physiologie cérébrale, les dauphins font preuve de capacités extrêmement rares dans le domaine animal. Comme les humains, les dauphins peuvent imiter, aussi bien sur le mode gestuel que sur le mode vocal, ce qui est soi est déjà exceptionnel. Si certains oiseaux peuvent imiter la voix, ils n’imitent pas les attitudes. Les singes, de leur côté, imitent les gestes et non les mots. Le dauphin est capable des deux. Les dauphins chassent les poissons et se nourrissent d’invertébrés, mais ils usent pour ce faire de techniques complexes et variables, acquises durant l’enfance grâce à l’éducation. L’usage des outils ne leur est pas inconnu : un exemple frappant de cette capacité est la façon dont deux dauphins captifs s’y sont pris pour extraire une murène cachée dans le creux d’un rocher à l’intérieur de leur bassin. L’un d’eux a d’abord attrapé un petit poisson scorpion très épineux, qui passait dans le secteur, et l’ayant saisi dans son rostre, s’en est servi comme d’un outil pour extraire la murène de sa cachette. S’exprimant à propos de leur intelligence, le Dr Louis M.Herman, Directeur du Kewalo Basin Marine Mammal Laboratory de l’Université d’Hawaii, note que les dauphins gardent en mémoire des événements totalement arbitraires, sans le moindre rapport avec leur environnement naturel et sans aucune incidence biologique quant à leur existence.

Recherches sur le langage des dauphins

Beaucoup d’humains trouvent intrigante l’idée de communiquer avec d’autres espèces. A cet égard, le dauphin constitue un sujet attractif, particulièrement dans le domaine du langage animal, du fait de ses capacités cognitives et de son haut degré de socialisation. Dès le début des années soixante, c’est le neurologue John Lilly qui, le premier, s’est intéressé aux vocalisations des cétacés. Les recherches de Lilly se poursuivirent durant toute une décennie, tout en devenant de moins en moins conventionnelles. Le savant alla même jusqu’à tester les effets du L.S.D. sur les émissions sonores des dauphins et dut finalement interrompre ses recherches en 1969, lorsque cinq de ses dauphins se suicidèrent en moins de deux semaines. Malheureusement, nombre de découvertes ou de déclarations de John Lilly sont franchement peu crédibles et ont jeté le discrédit sur l’ensemble des recherches dans le domaine du langage animal. De ce fait, ces recherches sont aujourd’hui rigoureusement contrôlées et très méticuleuses, de sorte que les assertions des scientifiques impliquées dans ce secteur restent désormais extrêmement réservées.

Louis Herman est sans doute l’un des plus importants chercheurs à mener des études sur la communication et les capacités cognitives des dauphins. Son instrument de travail privilégié est la création de langues artificielles, c’est-à-dire de langages simples crées pour l’expérience, permettant d’entamer des échanges avec les dauphins. Louis Herman a surtout concentré ses travaux sur le phénomène de la "compréhension" du langage bien plus que sur la "production" de langage, arguant que la compréhension est le premier signe d’une compétence linguistique chez les jeunes enfants et qu’elle peut être testée de façon rigoureuse. En outre, la structure grammaticale qui fonde les langages enseignés s’inspire le plus souvent de celle de l’anglais. Certains chercheurs ont noté qu’il aurait été mieux venu de s’inspirer davantage de langues à tons ou à flexions, comme le chinois, dont la logique aurait parue plus familière aux cétacés. Dans les travaux d’Herman, on a appris à deux dauphins, respectivement nommés Akeakamai (Ake) et Phoenix, deux langues artificielles. Phoenix a reçu l’enseignement d’un langage acoustique produit par un générateur de sons électroniques. Akeakamai, en revanche, a du apprendre un langage gestuel (version simplifiée du langage des sourds-muets), c’est-à-dire visuel. Les signaux de ces langues artificiels représentent des objets, des modificateurs d’objet (proche, loin, gros, petit, etc.) ou encore des actions. Ni les gestes ni les sons ne sont sensés représenter de façon analogique les objets ou les termes relationnels auxquels ils se réfèrent. Ces langages utilisent également une syntaxe, c’est-à-dire des règles de grammaire simples, ce qui signifie que l’ordre des mots influe sur le sens de la phrase. Phoenix a appris une grammaire classique, enchaînant les termes de gauche à droite (sujet-verbe-complément) alors que la grammaire enseignée à Ake allait dans l’autre sens et exigeait de sa part qu’elle voit l’ensemble du message avant d’en comprendre le sens correctement. Par exemple, dans le langage gestuel de Ake, la séquence des signaux PIPE-SURFBOARD-FETCH ("tuyau – planche à surf – apporter") indiquait l’ordre d’amener la planche de surf jusqu’au tuyau, alors que SURFBOARD-PIPE-FETCH ("planche-tuyau- rapporter") signifiait qu’il fallait, au contraire, amener le tuyau jusqu’ à la planche de surf. Phoenix et Ake ont ainsi appris environ 50 mots, lesquels, permutés l’un avec l’autre au sein de séquences courtes, leur permirent bientôt de se servir couramment de plus de mille phrases, chacune produisant une réponse neuve et non apprise.

Compte tenu de l’influence possible de la position dans l’espace des expérimentateurs sur l’expérimentation, les lieux d’apprentissage et les entraîneurs se voyaient changés de session en session. Dans le même temps, des observateurs "aveugles", qui ne connaissaient pas les ordres et ne voyaient pas les entraîneurs, notaient simplement le comportement des dauphins, afin de vérifier ensuite qu’il correspondait bien aux commandes annoncées. Les entraîneurs allaient jusqu’à porter des cagoules noires, afin de ne révéler aucune expression ou intention faciale et se tenaient immobiles, à l’exception des mains. Les dauphins se montrèrent capables de reconnaître les signaux du langage gestuels aussi bien lorsqu’il étaient filmés puis rediffusés sur un écran vidéo que lorsque ces mêmes signes étaient exécutés à l’air libre par l’entraîneur. Même le fait de ne montrer que des mains pâles sur un fond noir ou des taches de lumière blanche reproduisant la dynamique des mains, a largement suffi aux dauphins pour comprendre le message ! Il semble donc que les dauphins répondent davantage aux symboles abstraits du langage qu’à tout autre élément de la communication.

Par ailleurs, si les dauphins exécutent aisément les ordres qu’on leur donne par cette voie gestuelle, ils peuvent également répondre de façon correcte à la question de savoir si un objet précis est présent ou absent, en pressant le levier approprié (le clair pour PRESENT, le sombre pour ABSENT). Ceci démontre évidement leur faculté de "déplacement mental", qui consiste à manipuler l’image d’objets qui ne se trouvent pas dans les environs. Des expériences additionnelles ont conduit à préciser comment le dauphin conçoit l’étiquetage des objets, comment il les qualifie de son point de vue mental. "Nous avons constaté" nous apprend Louis Herman, "qu’au regard du dauphin, le signe CERCEAU n’est pas seulement le cerceau précis utilisé dans le cadre de cette expérience précise, c’est plutôt TOUT OBJET DE GRANDE TAILLE PERCE D’UN GRAND TROU AU MILIEU. Un seul concept général associe donc pour le dauphin les cerceaux ronds, carrés, grands et petits, flottants ou immergés, que l’on utilise généralement lors de la plupart des expériences". Parmi les choses que le Dr Herman estime n’avoir pu enseigner aux dauphins, il y a le concept du "non" en tant que modificateur logique. L’ordre de "sauter au-dessus d’une non-balle" indique en principe que le dauphin doit sauter au-dessus de n’importe quoi, sauf d’une balle ! Mais cela n’est pas compris, pas plus, affirme toujours Herman, que le concept de "grand" ou de "petit".

Communication naturelle chez les dauphins

On sait que les dauphins émettent de nombreux sifflements, de nature très diverse. La fonction de la plupart d’entre eux demeure toujours inconnue mais on peut affirmer aujourd’hui que la moitié d’entre eux au moins constitue des "signatures sifflées". Un tel signal se module dans une fourchette de 5 à 20 kilohertz et dure moins d’une seconde. Il se distingue des autres sifflements - et de la signature de tous les autres dauphins – par ses contours particuliers et ses variations de fréquences émises sur un temps donné, ainsi que le montrent les sonogrammes. Les jeunes développent leur propre signature sifflée entre l’âge de deux mois et d’un an. Ces sifflements resteront inchangés douze ans au moins et le plus souvent pour la durée entière de la vie de l’animal. Par ailleurs, au-delà de leur seule fonction nominative, certains des sifflements du dauphin apparaissent comme de fidèles reproductions de ceux de leurs compagnons et servent manifestement à interpeller les autres par leur nom. Lorsqu’ils sont encore très jeunes, les enfants mâles élaborent leur propre signature sifflée, qui ressemble fort à celle de leur mère. En revanche, les jeunes femelles doivent modifier les leurs, précisément pour se distinguer de leur mère.

Ces différences reflètent sans doute celles qui existent dans les modes de vie des femelles et des mâles. Puisque les filles élèvent leur propre enfant au sein du groupe maternel, un sifflement distinct est donc indispensable pour pouvoir distinguer la maman de la grand mère. La signature sifflée masculine, presque identique à celle de la mère, permet tout au contraire d’éviter l’inceste et la consanguinité. Le psychologue James Ralston et l’informaticien Humphrey Williams ont découvert que la signature sifflée pouvait véhiculer bien plus que la simple identité du dauphin qui l’émet. En comparant les sonogrammes des signatures sifflées durant les activités normales et lors de situations stressantes, ils découvrirent que la signature sifflée, tout en conservant sa configuration générale, pouvait changer en termes de tonalité et de durée et transmettre ainsi des informations sur l’état émotionnel de l’animal. Les modifications causé par cet état émotionnel sur les intonations de la signature varient en outre selon les individus. Les dauphins semblent donc utiliser les sifflement pour maintenir le contact lorsqu’ils se retrouvent entre eux ou lorsqu’ils rencontrent d’autres groupes, mais aussi, sans doute, pour coordonner leur activités collectives. Par exemple, des sifflements sont fréquemment entendus lorsque le groupe entier change de direction ou d’activité.

De son côté, Peter Tyack (Woods Hole Oceanographic Institute) a travaillé aux côtés de David Staelin, professeur d’ingénierie électronique au M.I.T., afin de développer un logiciel d’ordinateur capable de détecter les "matrices sonores" et les signaux répétitifs parmi le concert de couinements, piaulements et autres miaulements émis par les dauphins. Une recherche similaire est menée par l’Université de Singapore (Dolphin Study Group). Avec de tels outils, les chercheurs espèrent en apprendre davantage sur la fonction précise des sifflements.

Dauphins sociaux

Les observations menées sur des individus sauvages aussi bien qu’en captivité révèlent un très haut degré d’ordre social dans la société dauphin. Les femelles consacrent un an à leur grossesse et puis les trois années suivantes à élever leur enfant. Les jeunes s’éloignent en effet progressivement de leur mère dès leur troisième année, restant près d’elle jusqu’à six ou dix ans ! – et rejoignent alors un groupe mixte d’adolescents, au sein duquel ils demeurent plusieurs saisons. Parvenus à l’âge pleinement adulte, vers 15 ans en moyenne, les mâles ne reviennent plus que rarement au sein du "pod" natal. Cependant, à l’intérieur de ces groupes d’adolescents, des liens étroits se nouent entre garçons du même âge, qui peuvent persister la vie entière. Lorsque ces mâles vieillissent, ils ont tendance à s’associer à une bande de femelles afin d’y vivre une paisible retraite. Bien que les dauphins pratiquent bien volontiers la promiscuité sexuelle, les familles matriarcales constituent de fortes unités de base de la société dauphin. Lorsqu’une femelle donne naissance à son premier enfant, elle rejoint généralement le clan de sa propre mère et élève son delphineau en compagnie d’autres bébés, nés à la même saison. La naissance d’un nouveau-né donne d’ailleurs souvent lieu à des visites d’autres membres du groupe, mâles ou femelles, qui s’étaient séparés de leur mère depuis plusieurs années. Les chercheurs ont également observé des comportements de "baby-sitting", de vieilles femelles, des soeurs ou bien encore d’autres membres du groupe, voire même un ancien mâle prenant alors en charge la surveillance des petits. On a ainsi pu observer plusieurs dauphins en train de mettre en place une véritable "cour de récréation", les femelles se plaçant en U et les enfants jouant au milieu ! (D’après un texte du Dr Poorna Pal)

Moi, dauphin.

Mais qu’en est-il finalement de ce moi central au coeur de ce monde circulaire sans relief, sans couleurs constitué de pixels sonores ? C’est là que les difficultés deviennent insurmontables tant qu’un "contact" n’aura pas été vraiment établi par le dialogue car le "soi" lui-même, le "centre de la personne" est sans doute construit de façon profondément différente chez l’homme et chez le dauphin. H.Jerison parle carrément d’une "conscience collective". Les mouvements de groupe parfaitement coordonnés et quasi-simultanés, à l’image des bancs de poissons ou des troupeaux de gnous, que l’on observe régulièrement chez eux, suppose à l’évidence une pensée "homogène" au groupe, brusquement transformé en une "personne plurielle". On peut imaginer ce sentiment lors d’un concert de rock ou d’une manifestation, lorsqu’une foule entière se tend vers un même but mais ces attitudes-là sont grossières, globales, peu nuancées. Toute autre est la mise à l’unisson de deux, trois, cinq (les "gangs" de juvéniles mâles associés pour la vie) ou même de plusieurs centaines de dauphins ensemble (de formidables "lignes de front" pour la pêche, qui s’étendent sur des kilomètres) et là, bien sûr, nous avons un comportement qui traduit un contenu mental totalement inconnu de nous. On sait que lorsqu’un dauphin voit, tout le monde l’entend. En d’autres termes chaque fois qu’un membre du groupe focalise son faisceau de clicks sur une cible quelconque, l’écho lui revient mais également à tous ceux qui l’entourent. Imaginons que de la même manière, vous regardiez un beau paysage. La personne qui vous tournerait le dos et se tiendrait à l’arrière derrière vous pourrait le percevoir alors aussi bien que vous le faites. Cette vision commune, qui peut faire croire à de la télépathie, n’est pas sans conséquence sur le contenu mental de chaque dauphin du groupe, capable de fusionner son esprit à ceux des autres quand la nécessité s’en fait sentir. Ceci explique sans doute la formidable capacité d’empathie des dauphins mais aussi leur fidélité "jusqu’à la mort" quand il s’agit de suivre un compagnon qui s’échoue. Chez eux, on ne se sépare pas plus d’un ami en détresse qu’on ne se coupe le bras quand il est coincé dans une portière de métro ! En d’autres circonstances, bien sûr, le dauphin voyage seul et il "rassemble" alors sa conscience en un soi individualisé, qui porte un nom, fait des choix et s’intègre dans une lignée. Il en serait de même pour l’homme si les mots pouvaient faire surgir directement les images qu’ils désignent dans notre cerveau, sans passer par le filtre d’une symbolisation intermédiaire. Si quelqu’un me raconte sa journée, je dois d’abord déchiffrer ses mots, les traduire en image et ensuite me les "représenter". Notre système visuel étant indépendant de notre système auditif, un processus de transformation préalable est nécessaire à la prise de conscience du message. Au contraire, chez le dauphin, le système auditif est à la fois un moyen de communication et un moyen de cognition "constructiviste" (analyse sensorielle de l’environnement). La symbolisation n’est donc pas nécessaire aux transferts d’images, ce qui n’empêche nullement qu’elle puisse exister au niveau des concepts abstraits. Quant à cette conscience fusion-fission, cet "ego fluctuant à géométrie variable", ils préparent tout naturellement le dauphin à s’ouvrir à d’autres consciences que la sienne. D’où sans doute, son besoin de nous sonder, de nous comprendre et de nous "faire" comprendre. Un dauphin aime partager son cerveau avec d’autres, tandis que l’homme vit le plus souvent enfermé dans son crâne. Ces êtres-là ont décidément beaucoup à nous apprendre...

Auteur: Internet

Info: http://www.dauphinlibre.be/dauphins-cerveau-intelligence-et-conscience-exotiques

[ comparaisons ] [ mimétisme ] [ sémiotique ] [ intelligence grégaire ]

 

Commentaires: 0

univers protonique

Forces tourbillonnantes et pressions d’écrasement mesurées dans le proton

Des expériences très attendues qui utilisent la lumière pour imiter la gravité révèlent pour la première fois la répartition des énergies, des forces et des pressions à l’intérieur d’une particule subatomique.

(Image : Les forces poussent dans un sens près du centre du proton et dans l’autre sens près de sa surface.)

Les physiciens ont commencé à explorer le proton comme s’il s’agissait d’une planète subatomique. Les cartes en coupe affichent de nouveaux détails de l'intérieur de la particule. Le noyau du proton présente des pressions plus intenses que dans toute autre forme connue de matière. À mi-chemin de la surface, des tourbillons de force s’affrontent les uns contre les autres. Et la " planète " dans son ensemble est plus petite que ne le suggéraient les expériences précédentes.

Les recherches expérimentales marquent la prochaine étape dans la quête visant à comprendre la particule qui ancre chaque atome et constitue la majeure partie de notre monde.

"Nous y voyons vraiment l'ouverture d'une direction complètement nouvelle qui changera notre façon de considérer la structure fondamentale de la matière", a déclaré Latifa Elouadrhiri , physicienne au Thomas Jefferson National Accelerator Facility à Newport News, en Virginie, qui participe à l'effort.

Les expériences jettent littéralement un nouvel éclairage sur le proton. Au fil des décennies, les chercheurs ont méticuleusement cartographié l’influence électromagnétique de la particule chargée positivement. Mais dans la nouvelle recherche, les physiciens du Jefferson Lab cartographient plutôt l'influence gravitationnelle du proton, à savoir la répartition des énergies, des pressions et des contraintes de cisaillement, qui courbent le tissu espace-temps dans et autour de la particule. Pour ce faire, les chercheurs exploitent une manière particulière par laquelle des paires de photons, des particules de lumière, peuvent imiter un graviton, la particule supposée qui transmet la force de gravité. En envoyant un ping au proton avec des photons, ils déduisent indirectement comment la gravité interagirait avec lui, réalisant ainsi un rêve vieux de plusieurs décennies consistant à interroger le proton de cette manière alternative.

"C'est un tour de force", a déclaré Cédric Lorcé , physicien à l'Ecole Polytechnique en France, qui n'a pas participé aux travaux. "Expérimentalement, c'est extrêmement compliqué." 

Des photons aux gravitons


Les physiciens ont appris énormément sur le proton au cours des 70 dernières années en le frappant à plusieurs reprises avec des électrons. Ils savent que sa charge électrique s’étend sur environ 0,8 femtomètre, ou quadrillionièmes de mètre, à partir de son centre. Ils savent que les électrons entrants ont tendance à être projetés sur l’un des trois quarks – des particules élémentaires avec des fractions de charge – qui bourdonnent à l’intérieur. Ils ont également observé la conséquence profondément étrange de la théorie quantique où, lors de collisions plus violentes, les électrons semblent rencontrer une mer mousseuse composée de bien plus de quarks ainsi que de gluons, porteurs de la force dite forte, qui colle les quarks ensemble.

Toutes ces informations proviennent d’une seule configuration : vous lancez un électron sur un proton, et les particules échangent un seul photon – le porteur de la force électromagnétique – et se repoussent. Cette interaction électromagnétique indique aux physiciens comment les quarks, en tant qu'objets chargés, ont tendance à s'organiser. Mais le proton a bien plus à offrir que sa charge électrique.

(Photo : Latifa Elouadrhiri, scientifique principale du laboratoire Jefferson, a dirigé la collecte de données à partir desquelles elle et ses collaborateurs calculent désormais les propriétés mécaniques du proton.) 

" Comment la matière et l'énergie sont-elles distribuées ? " a demandé Peter Schweitzer , physicien théoricien à l'Université du Connecticut. "Nous ne savons pas."

Schweitzer a passé la majeure partie de sa carrière à réfléchir au côté gravitationnel du proton. Plus précisément, il s'intéresse à une matrice de propriétés du proton appelée tenseur énergie-impulsion. " Le tenseur énergie-impulsion sait tout ce qu'il y a à savoir sur la particule ", a-t-il déclaré.

Dans la théorie de la relativité générale d'Albert Einstein, qui présente l'attraction gravitationnelle comme des objets suivant des courbes dans l'espace-temps, le tenseur énergie-impulsion indique à l'espace-temps comment se plier. Elle décrit, par exemple, la disposition de l'énergie (ou, de manière équivalente, de la masse) – la source de ce qui est la part du lion de la torsion de l'espace-temps. Elle permet également d'obtenir des informations sur la répartition de la dynamique, ainsi que sur les zones de compression ou d'expansion, ce qui peut également donner une légère courbure à l'espace-temps.

Si nous pouvions connaître la forme de l'espace-temps entourant un proton, élaborée indépendamment par des physiciens russes et   américains dans les années 1960, nous pourrions en déduire toutes les propriétés indexées dans son tenseur énergie-impulsion. Celles-ci incluent la masse et le spin du proton, qui sont déjà connus, ainsi que l'agencement des pressions et des forces du proton, une propriété collective que les physiciens nomment " Druck term ", d'après le mot " pression"  en allemand. Ce terme est " aussi important que la masse et la rotation, et personne ne sait ce que c'est ", a déclaré Schweitzer – même si cela commence à changer.

Dans les années 60, il semblait que la mesure du tenseur énergie-momentum et le calcul du terme de Druck nécessiteraient une version gravitationnelle de l'expérience de diffusion habituelle : On envoie une particule massive sur un proton et on laisse les deux s'échanger un graviton - la particule hypothétique qui constitue les ondes gravitationnelles - plutôt qu'un photon. Mais en raison de l'extrême subtilité de la gravité, les physiciens s'attendent à ce que la diffusion de gravitons se produise 39 fois plus rarement que la diffusion de photons. Les expériences ne peuvent pas détecter un effet aussi faible.

"Je me souviens avoir lu quelque chose à ce sujet quand j'étais étudiant", a déclaré Volker Burkert , membre de l'équipe du Jefferson Lab. Ce qu’il faut retenir, c’est que " nous ne pourrons probablement jamais rien apprendre sur les propriétés mécaniques des particules ".Gravitation sans gravité

Les expériences gravitationnelles sont encore inimaginables aujourd’hui. Mais les recherches menées en fin des années 1990 et au début des années 2000 par les physiciens Xiangdong Ji et, travaillant séparément, feu Maxim Polyakov, ont révélé une solution de contournement.

Le schéma général est le suivant. Lorsque vous tirez légèrement un électron sur un proton, il délivre généralement un photon à l'un des quarks et le détourne. Mais lors d’un événement sur un milliard, quelque chose de spécial se produit. L’électron entrant envoie un photon. Un quark l'absorbe puis émet un autre photon un battement de cœur plus tard. La principale différence est que cet événement rare implique deux photons au lieu d’un : des photons entrants et sortants. Les calculs de Ji et Polyakov ont montré que si les expérimentateurs pouvaient collecter les électrons, protons et photons résultants, ils pourraient déduire des énergies et des impulsions de ces particules ce qui s'est passé avec les deux photons. Et cette expérience à deux photons serait essentiellement aussi informative que l’impossible expérience de diffusion de gravitons.

Comment deux photons pourraient-ils connaître la gravité ? La réponse fait appel à des mathématiques très complexes. Mais les physiciens proposent deux façons de comprendre pourquoi cette astuce fonctionne.

Les photons sont des ondulations dans le champ électromagnétique, qui peuvent être décrites par une seule flèche, ou vecteur, à chaque emplacement de l'espace indiquant la valeur et la direction du champ. Les gravitons seraient des ondulations dans la géométrie de l’espace-temps, un domaine plus complexe représenté par une combinaison de deux vecteurs en chaque point. Capturer un graviton donnerait aux physiciens deux vecteurs d’informations. En dehors de cela, deux photons peuvent remplacer un graviton, puisqu’ils transportent également collectivement deux vecteurs d’information.

Une interprétation mathématiques alternative est celle-ci. Pendant le moment qui s'écoule entre le moment où un quark absorbe le premier photon et celui où il émet le second, le quark suit un chemin à travers l'espace. En sondant ce chemin, nous pouvons en apprendre davantage sur des propriétés telles que les pressions et les forces qui entourent le chemin.

"Nous ne faisons pas d'expérience gravitationnelle", a déclaré Lorcé. Mais " nous devrions obtenir un accès indirect à la manière dont un proton devrait interagir avec un graviton ". 

Sonder la planète Proton
En 2000, les physiciens du Jefferson Lab ont réussi à obtenir quelques résultats de diffusion à deux photons. Cette démonstration de faisabilité les a incités à construire une nouvelle expérience et, en 2007, ils ont fait entrer des électrons dans des protons suffisamment de fois pour obtenir environ 500 000 collisions imitant les gravitons. L'analyse des données expérimentales a pris une décennie de plus.

À partir de leur index des propriétés de flexion de l’espace-temps, l’équipe a extrait le terme insaisissable de Druck, publiant son estimation des pressions internes du proton dans Nature en 2018.

Ils ont découvert qu’au cœur du proton, la force puissante génère des pressions d’une intensité inimaginable : 100 milliards de milliards de milliards de pascals, soit environ 10 fois la pression au cœur d’une étoile à neutrons. Plus loin du centre, la pression chute et finit par se retourner vers l'intérieur, comme c'est nécessaire pour que le proton ne se brise pas. "Voilà qui résulte de l'expérience", a déclaré Burkert. "Oui, un proton est réellement stable." (Cette découverte n’a cependant aucune incidence sur la désintégration des protons , ce qui implique un type d’instabilité différent prédit par certaines théories spéculatives.)

Le groupe Jefferson Lab a continué à analyser le terme Druck. Ils ont publié une estimation des forces de cisaillement (forces internes poussant parallèlement à la surface du proton) dans le cadre d'une étude publiée en décembre. Les physiciens ont montré que près de son noyau, le proton subit une force de torsion qui est neutralisée par une torsion dans l’autre sens plus près de la surface. Ces mesures soulignent également la stabilité de la particule. Les rebondissements étaient attendus sur la base des travaux théoriques de Schweitzer et Polyakov. "Néanmoins, le voir émerger de l'expérience pour la première fois est vraiment stupéfiant", a déclaré Elouadrhiri.

Ils utilisent désormais ces outils pour calculer la taille du proton d'une nouvelle manière. Dans les expériences de diffusion traditionnelles, les physiciens avaient observé que la charge électrique de la particule s'étendait à environ 0,8 femtomètre de son centre (c'est-à-dire que les quarks qui la composent bourdonnent dans cette région). Mais ce " rayon de charge " présente quelques bizarreries. Dans le cas du neutron, par exemple — l'équivalent neutre du proton, dans lequel deux quarks chargés négativement ont tendance à rester profondément à l'intérieur de la particule tandis qu'un quark chargé positivement passe plus de temps près de la surface — le rayon de charge apparaît comme un nombre négatif.  "Cela ne veut pas dire que la taille est négative ; ce n'est tout simplement pas une mesure fiable ", a déclaré Schweitzer.

La nouvelle approche mesure la région de l’espace-temps considérablement courbée par le proton. Dans une prépublication qui n'a pas encore été évaluée par des pairs, l'équipe du Jefferson Lab a calculé que ce rayon pourrait être environ 25 % plus petit que le rayon de charge, soit seulement 0,6 femtomètre.

Les limites de la planète Proton

D'un point de vue conceptuel, ce type d'analyse adoucit la danse floue des quarks pour en faire un objet solide, semblable à une planète, avec des pressions et des forces agissant sur chaque point de volume. Cette planète gelée ne reflète pas entièrement le proton bouillonnant dans toute sa gloire quantique, mais c'est un modèle utile. "C'est une interprétation", a déclaré M. Schweitzer.

Et les physiciens soulignent que ces cartes initiales sont approximatives, pour plusieurs raisons.

Premièrement, mesurer avec précision le tenseur énergie-impulsion nécessiterait des énergies de collision beaucoup plus élevées que celles que Jefferson Lab peut produire. L’équipe a travaillé dur pour extrapoler soigneusement les tendances à partir des énergies relativement faibles auxquelles elles peuvent accéder, mais les physiciens ne sont toujours pas sûrs de la précision de ces extrapolations.

(Photo : Lorsqu'il était étudiant, Volker Burkert a lu qu'il était impossible de mesurer directement les propriétés gravitationnelles du proton. Aujourd'hui, il participe à une collaboration au laboratoire Jefferson qui est en train de découvrir indirectement ces mêmes propriétés.)

De plus, le proton est plus que ses quarks ; il contient également des gluons, qui se déplacent sous leurs propres pressions et forces. L'astuce à deux photons ne peut pas détecter les effets des gluons. Une autre équipe du Jefferson Lab a utilisé une astuce analogue ( impliquant une interaction double-gluon ) pour publier l'année dernière une carte gravitationnelle préliminaire de ces effets des gluons dans Nature, mais elle était également basée sur des données limitées et à faible énergie.

"C'est une première étape", a déclaré Yoshitaka Hatta, physicien au Brookhaven National Laboratory qui a eu l'idée de commencer à étudier le proton gravitationnel après les travaux du groupe Jefferson Lab en 2018.

Des cartes gravitationnelles plus précises des quarks du proton et de ses gluons pourraient être disponibles dans les années 2030, lorsque le collisionneur électron-ion, une expérience actuellement en construction à Brookhaven, entrera en activité.

Pendant ce temps, les physiciens poursuivent leurs expériences numériques. Phiala Shanahan, physicienne nucléaire et des particules au Massachusetts Institute of Technology, dirige une équipe qui calcule le comportement des quarks et des gluons à partir des équations de la force forte. En 2019, elle et ses collaborateurs ont estimé les pressions et les forces de cisaillement, et en octobre, en ont estimé le rayon, entre autres propriétés. Jusqu'à présent, leurs résultats numériques ont été largement alignés sur les résultats physiques du Jefferson Lab. "Je suis certainement très excitée par la cohérence entre les résultats expérimentaux récents et nos données", a déclaré Mme Shanahan.

Même les aperçus flous du proton obtenus jusqu'à présent ont légèrement remodelé la compréhension des chercheurs sur la particule.

Certaines conséquences sont pratiques. Au CERN, l'organisation européenne qui gère le Grand collisionneur de hadrons, le plus grand broyeur de protons au monde, les physiciens pensaient auparavant que dans certaines collisions rares, les quarks pouvaient se trouver n'importe où dans les protons en collision. Mais les cartes inspirées par la gravitation suggèrent que les quarks ont tendance à rester près du centre dans de tels cas.

"Les modèles utilisés au CERN ont déjà été mis à jour", a déclaré François-Xavier Girod, physicien du Jefferson Lab qui a travaillé sur les expériences.

Les nouvelles cartes pourraient également offrir des pistes pour résoudre l’un des mystères les plus profonds du proton : pourquoi les quarks se lient en protons. Il existe un argument intuitif selon lequel, comme la force puissante entre chaque paire de quarks s'intensifie à mesure qu'ils s'éloignent, comme un élastique, les quarks ne peuvent jamais échapper à leurs camarades.

Mais les protons sont fabriqués à partir des membres les plus légers de la famille des quarks. Et les quarks légers peuvent également être considérés comme de longues ondes s'étendant au-delà de la surface du proton. Cette image suggère que la liaison du proton pourrait se produire non pas via la traction interne de bandes élastiques, mais par une interaction externe entre ces quarks ondulés et étirés. La cartographie de pression montre l’attraction de la force forte s’étendant jusqu’à 1,4 femtomètres et au-delà, renforçant ainsi l’argument en faveur de ces théories alternatives.

"Ce n'est pas une réponse définitive", a déclaré Girod, "mais cela indique que ces simples images avec des bandes élastiques ne sont pas pertinentes pour les quarks légers."



Auteur: Internet

Info: https://filsdelapensee.ch - Charlie Bois, 14 mars 2024

[ chromodynamique quantique ]

 

Commentaires: 0

Ajouté à la BD par miguel

conscience-subconscient

Est-ce réel ou imaginaire ? Comment votre cerveau fait la différence.

De nouvelles expériences montrent que le cerveau fait la distinction entre les images mentales perçues et imaginées en vérifiant si elles franchissent un " seuil de réalité ".

Est-ce la vraie vie ? Est-ce juste un fantasme ?

Il ne s’agit pas seulement des paroles de la chanson " Bohemian Rhapsody " de Queen. Ce sont aussi les questions auxquelles le cerveau doit constamment répondre lorsqu’il traite les flux de signaux visuels provenant des yeux et les images purement mentales qui jaillissent de l’imagination. Des études sur les scanners cérébraux ont montré à plusieurs reprises que voir quelque chose et l’imaginer évoquent des schémas d’activité neuronale très similaires. Pourtant, pour la plupart d’entre nous, les expériences subjectives qu’ils produisent sont très différentes.

" Je peux regarder par ma fenêtre en ce moment même et, si je le souhaite, je peux imaginer une licorne marchant dans la rue ", a déclaré Thomas Naselaris, professeur associé à l'Université du Minnesota. La rue semblerait réelle et la licorne, non. " C'est très clair pour moi ", a-t-il déclaré. Le fait de savoir que les licornes sont mythiques n'a pas grand-chose à voir avec cela : un simple cheval blanc imaginaire semblerait tout aussi irréel.

Alors, " pourquoi n’avons-nous pas constamment des hallucinations ? ", s’interroge Nadine Dijkstra, chercheuse postdoctorale à l'University College de Londres. Une étude qu'elle a dirigée, récemment publiée dans Nature Communications, fournit une réponse intrigante : le cerveau évalue les images qu'il traite par rapport à un " seuil de réalité ". Si le signal dépasse ce seuil, le cerveau pense qu'il est réel ; si ce n'est pas le cas, il pense qu'il est imaginaire.

Un tel système fonctionne bien la plupart du temps car les signaux imaginaires sont généralement faibles. Mais si un signal imaginaire est suffisamment fort pour franchir le seuil, le cerveau le prend pour la réalité.

Bien que le cerveau soit très compétent pour évaluer les images dans notre esprit, il semble que " ce type de vérification de la réalité soit un sérieux conféit ", a déclaré Lars Muckli, professeur de neurosciences visuelles et cognitives à l'Université de Glasgow. Ces nouvelles découvertes soulèvent des questions quant à savoir si des variations ou des altérations dans ce système pourraient conduire à des hallucinations, des pensées invasives ou même à des rêves.

" Ils ont fait un excellent travail, à mon avis, en prenant un problème sur lequel les philosophes débattent depuis des siècles et en définissant des modèles avec des résultats prévisibles et en les testant ", a déclaré Naselaris.

Quand perceptions et imagination se mélangent

L’étude des images imaginées par Dijkstra est née au début de la pandémie de Covid-19, lorsque les quarantaines et les confinements ont interrompu son programme de travail. Par ennui, elle a commencé à parcourir la littérature scientifique sur l’imagination, puis a passé des heures à éplucher des articles pour trouver des récits historiques sur la manière dont les scientifiques ont testé un concept aussi abstrait. C’est ainsi qu’elle est tombée sur une étude de 1910 menée par la psychologue Mary Cheves West Perky.

Perky a demandé aux participants d’imaginer des fruits tout en regardant un mur blanc. Pendant qu’ils le faisaient, elle projetait secrètement des images extrêmement faibles de ces fruits – si faibles qu’elles étaient à peine visibles – sur le mur et demandait aux participants s’ils voyaient quelque chose. Aucun d’entre eux n’a pensé avoir vu quelque chose de réel, bien qu’ils aient commenté à quel point leur image imaginée semblait vivante. " Si je n’avais pas su que j’imaginais, j’aurais pensé que c’était réel ", a déclaré un participant.

(Photo : Une étude réalisée en 1910 par la psychologue Mary Cheves West Perky a révélé que lorsque nos perceptions correspondent à ce que nous imaginons, nous supposons que leurs entrées sont imaginaires. )

La conclusion de Perky était que lorsque notre perception de quelque chose correspond à ce que nous savons que nous imaginons, nous supposerons que c'est imaginaire. Cet effet est finalement connu en psychologie sous le nom d'effet Perky.* " C'est un grand classique ", a déclaré Bence Nanay(ouvre un nouvel onglet), professeur de psychologie philosophique à l’Université d’Anvers. " C’est devenu une sorte de chose obligatoire lorsqu'on écrivez sur l’imagerie de mettre son grain de sel sur l’expérience Perky. "

Dans les années 1970, la chercheuse en psychologie Sydney Joelson Segal a ravivé l’intérêt pour les travaux de Perky en actualisant et en modifiant l’expérience. Dans cette étude, Segal a demandé aux participants d’imaginer quelque chose, comme le paysage urbain de New York, tandis qu’elle projetait quelque chose d’autre sur le mur, comme une tomate. Ce que les participants voyaient était un mélange de l’image imaginée et de l’image réelle, comme le paysage urbain de New York au coucher du soleil. Les conclusions de Segal suggèrent que la perception et l’imagination peuvent parfois " littéralement se mélanger ", a déclaré Nanay.

Les études visant à reproduire les résultats de Perky n'ont pas toutes abouti. Certaines d'entre elles ont nécessité des essais répétés pour les participants, ce qui a brouillé les résultats : une fois que les gens savent ce que vous essayez de tester, ils ont tendance à modifier leurs réponses en fonction de ce qu'ils pensent être correct, a déclaré Naselaris.

Alors Dijkstra, sous la direction de Steve Fleming, expert en métacognition à l'University College de Londres, a mis au point une version moderne de l'expérience qui évite le problème. Dans leur étude, les participants n'ont jamais eu la possibilité de modifier leurs réponses car ils n'ont été testés qu'une seule fois. L'étude a modélisé et examiné l'effet Perky et deux autres hypothèses concurrentes sur la façon dont le cerveau distingue la réalité de l'imagination.

Réseaux d'évaluation

L'une de ces hypothèses alternatives affirme que le cerveau utilise les mêmes réseaux pour la réalité et l'imagination, mais que les scanners cérébraux par imagerie par résonance magnétique fonctionnelle (IRMf) n'ont pas une résolution suffisamment élevée pour que les neuroscientifiques puissent discerner les différences dans la façon dont ces réseaux sont utilisés. L'une des études de Muckli, par exemple, suggère que dans le cortex visuel du cerveau, qui traite les images, les expériences imaginaires sont codées dans une couche plus superficielle que les expériences réelles. 

Avec l'imagerie cérébrale fonctionnelle, " nous plissons les yeux ", explique Muckli. Dans chaque pixel d'un scanner cérébral, il y a environ 1 000 neurones, et nous ne pouvons pas voir ce que chacun d'eux fait.

L’autre hypothèse, suggérée par des études dirigé par Joel Pearson à l'Université de Nouvelle-Galles du Sud, c'est que les mêmes voies dans le cerveau codent à la fois l'imagination et la perception, mais l'imagination n'est qu'une forme plus faible de perception.

Pendant le confinement, Dijkstra et Fleming ont recruté des participants pour une étude en ligne. On leur a demandé de regarder une série d’images statiques et d’imaginer des lignes diagonales les traversant vers la droite ou la gauche. Entre chaque essai, on leur a demandé d’évaluer la vivacité de l’imagerie sur une échelle de 1 à 5. Ce que les participants ne savaient pas, c’est que lors du dernier essai, les chercheurs avaient imperceptiblement augmenté l’intensité d’une image projetée de lignes diagonales, inclinée soit dans la direction que les participants devaient imaginer, soit dans la direction opposée. Les chercheurs ont ensuite demandé aux participants si ce qu’ils voyaient était réel ou imaginaire.

Dijkstra s’attendait à ce que l’effet Perky soit observé : lorsque l’image imaginée correspond à l’image projetée, les participants voient la projection comme le produit de leur imagination.  Alors qu'ici les  participants considérèrent plus que l’image était réellement là.

Il y avait pourtant au moins un écho de l’effet Perky dans ces résultats : les participants qui pensaient que l’image était là la percevaient plus vivement que ceux qui pensaient qu’elle était le fruit de leur imagination.

Dans une deuxième expérience, Dijkstra et son équipe n'ont pas présenté d'image lors du dernier essai. Mais le résultat fut le même : les personnes qui estimaient que ce qu'elles voyaient était plus vivant étaient également plus susceptibles de le considérer comme réel.

Les observations suggèrent que les images que nous percevons dans notre esprit et les images réelles que nous percevons dans le monde se mélangent, a déclaré Dijkstra. " Lorsque ce signal mixte est suffisamment fort ou vif, nous pensons qu'il reflète la réalité. " Il est probable qu'il existe un seuil au-dessus duquel les signaux visuels semblent réels pour le cerveau et en dessous duquel ils semblent imaginaires, pense-t-elle. Mais il pourrait également y avoir un continuum plus progressif.

Pour comprendre ce qui se passe dans un cerveau qui tente de distinguer la réalité de l'imagination, les chercheurs ont réanalysé les scanners cérébraux d'une étude précédente dans laquelle 35 participants ont imaginé et perçu de manière vivante diverses images, allant des arrosoir  aux coqs.

Conformément à d’autres études, ils ont constaté que les schémas d’activité du cortex visuel dans les deux scénarios étaient très similaires. " Une image vive est plus proche de la perception, mais il n'est pas certain qu'une perception faible soit aussi de l'ordre de la visualisation. ", a déclaré Dijkstra. Certains indices laissaient penser que regarder une image faible pouvait produire un schéma similaire à celui de l’imagination, mais les différences n’étaient pas significatives et doivent être examinées plus en détail.

( Image, Les scanners des fonctions cérébrales montrent que les images imaginées et perçues déclenchent des schémas d’activité similaires, mais les signaux sont plus faibles pour les images imaginées (à gauche). )

Ce qui est sûr, c’est que le cerveau doit être capable de réguler avec précision la force d’une image mentale pour éviter toute confusion entre fantasme et réalité. " Le cerveau doit effectuer un exercice d’équilibre très délicat ", explique Naselaris. " Dans un certain sens, il va interpréter l’imagerie mentale aussi littéralement que l’imagerie visuelle. "

Ils ont donc découvert que la force du signal pouvait être lue ou régulée dans le cortex frontal, qui analyse les émotions et les souvenirs (entre autres fonctions). Mais on ne sait pas encore clairement ce qui détermine la vivacité d'une image mentale ou la différence entre la force du signal d'imagerie et le seuil de réalité. Il pourrait s'agir d'un neurotransmetteur, de modifications des connexions neuronales ou de quelque chose de totalement différent, a déclaré Naselaris.

Il pourrait même s'agir d'un sous-ensemble différent et non identifié de neurones qui fixe le seuil de réalité et dicte si un signal doit être détourné vers une voie pour les images imaginées ou une voie pour les images réellement perçues - une découverte qui relierait parfaitement les première et troisième hypothèses, a déclaré Muckli.

Même si les résultats sont différents de ses propres résultats, qui soutiennent la première hypothèse, Muckli apprécie leur raisonnement. C'est un " article passionnant ", a-t-il déclaré. Avec une " conclusion intrigante ".

Mais l'imagination est un processus qui implique bien plus que la simple observation de quelques lignes sur un fond bruyant, a déclaré Peter Tse, professeur de neurosciences cognitives au Dartmouth College. L'imagination, dit-il, c'est la capacité de regarder ce qu'il y a dans votre placard et de décider quoi préparer pour le dîner, ou (si vous êtes les frères Wright) de prendre une hélice, de la coller sur une aile et de l'imaginer voler.

Les différences entre les résultats de Perky et ceux de Dijkstra pourraient être entièrement dues à des différences dans leurs procédures. Mais elles laissent également entrevoir une autre possibilité : notre perception du monde pourrait être différente de celle de nos ancêtres.

Selon Dijkstra, son étude ne s'est pas focalisée sur la croyance en la réalité d'une image, mais plutôt sur le " ressenti " du réel. Les auteurs émettent l'hypothèse que, dans la mesure où les images projetées, les vidéos et autres représentations de la réalité sont monnaie courante au XXIe siècle, notre cerveau a peut-être appris à évaluer la réalité de manière légèrement différente de ce qu'il était il y a un siècle.

Même si les participants à cette expérience " ne s'attendaient pas à voir quelque chose, c'est quand même plus attendu que si vous étiez en 1910 et que vous n'aviez jamais vu de projecteur de votre vie ", a déclaré Dijkstra. Le seuil de réalité est donc probablement beaucoup plus bas aujourd'hui que par le passé, il faudra donc peut-être une image imaginée beaucoup plus vive pour franchir ce seuil et perturber le cerveau.

Une base pour les hallucinations

Ces résultats soulèvent des questions sur la pertinence de ce mécanisme dans un large éventail de pathologies dans lesquelles la distinction entre imagination et perception disparaît. Dijkstra émet l’hypothèse que lorsque les gens commencent à s’endormir et que la réalité commence à se fondre dans le monde des rêves, leur seuil de réalité pourrait baisser. Dans des pathologies comme la schizophrénie, où il y a une " dégradation générale de la réalité ", il pourrait y avoir un problème d’étalonnage, a déclaré Dijkstra.

" Dans la psychose, il se peut que leur imagerie soit si bonne qu'elle atteint ce seuil, ou il se peut que leur seuil soit décalé ", a déclaré Karolina Lempert, professeur adjoint de psychologie à l'université d'Adelphi qui n'a pas participé à l'étude. Certaines études ont révélé que chez les personnes qui ont des hallucinations, il existe une sorte d'hyperactivité sensorielle, ce qui suggère que " Le signal de l’image est augmenté. Mais des recherches plus poussées sont nécessaires pour établir le mécanisme par lequel les hallucinations apparaissent ", a-t-elle ajouté. " Après tout, la plupart des personnes qui ressentent de vives images n'ont pas pour autant d'hallucinations. "

Nanay pense qu'il serait intéressant d'étudier les seuils de réalité des personnes atteintes d'hyperphantasie, une imagination extrêmement vive qu'elles confondent souvent avec la réalité. De même, il existe des situations dans lesquelles les personnes souffrent d'expériences imaginaires très fortes qu'elles savent ne pas être réelles, comme lorsqu'elles ont des hallucinations sous l'effet de drogues ou dans des rêves lucides. Dans des conditions telles que le syndrome de stress post-traumatique, les personnes " commencent souvent à voir des choses qu'elles ne voulaient pas voir ", et cela semble plus réel que cela ne devrait l'être, a déclaré Dijkstra.

Certains de ces problèmes peuvent impliquer des défaillances dans les mécanismes cérébraux qui aident normalement à faire ces distinctions. Dijkstra pense qu'il pourrait être utile d'étudier les seuils de réalité des personnes atteintes d'aphantasie, l'incapacité à imaginer consciemment des images mentales.

Les mécanismes par lesquels le cerveau distingue le réel de l’imaginaire pourraient également être liés à la façon dont il distingue les images réelles des fausses. Dans un monde où les simulations se rapprochent de la réalité, distinguer les images réelles des fausses va devenir de plus en plus difficile, a déclaré Lempert. " Je pense que c’est peut-être une question plus importante que jamais. "

Dijkstra et son équipe travaillent actuellement à adapter leur expérience pour qu’elle fonctionne avec un scanner cérébral. "  Maintenant que le confinement est terminé, je veux à nouveau observer des cerveaux ", a-t-elle déclaré.

Elle espère finalement découvrir s’il est possible de manipuler ce système pour rendre l’imagination plus réelle. Par exemple, la réalité virtuelle et les implants neuronaux sont actuellement étudiés pour des traitements médicaux, par exemple pour aider les aveugles à recouvrer la vue. La capacité de rendre les expériences plus ou moins réelles, a-t-elle déclaré, pourrait être très importante pour de telles applications.

Ce n’est pas farfelu, étant donné que la réalité est une construction du cerveau.

" Sous notre crâne, tout est fabriqué ", explique Muckli. " Nous construisons entièrement le monde, dans sa richesse, ses détails, ses couleurs, ses sons, son contenu et son excitation. […] Il est créé par nos neurones. "

Cela signifie que la réalité d'une personne sera différente de celle d'une autre, a déclaré Dijkstra : " La frontière entre l'imagination et la réalité n'est tout simplement pas si solide. "

Auteur: Internet

Info: Quanta Magazine, Yasemin Saplakoglu, 24 mai 2023 *quand on imagine quelque chose, ça peut nous empêcher de bien voir la même chose dans la réalité, surtout si elle est difficile à voir. C'est comme si ton imagination prenait la place de tes yeux.

[ solipsismes orthogonaux ] [ discrimination ] [ discernement ]

 

Commentaires: 0

Ajouté à la BD par miguel

espace lointain

Le plus puissant télescope au monde réécrit l'histoire du temps et de l'espace

Le télescope James Webb de la NASA a permis de lever le voile sur les premières galaxies, qui sont plus nombreuses et plus brillantes que ce qu'imaginaient les scientifiques.

Sur l’une des vues les plus profondes de l’Univers jamais réalisées, le télescope spatial James Webb montre des milliers d’étoiles et de galaxies. Au centre, l’amas de galaxies distord le trajet de la lumière.

(Photo - simulation. Quand l'univers était jeune il y a plus de 13 milliards et demi d’années, aucune étoile ne brillait dans les profondeurs du ciel. Nous étions alors en plein âges sombres, époque où le cosmos était empli d’hélium et d’hydrogène – des gaz qui allaient constituer la matière première de tous les mondes à venir.)

Existait également la mystérieuse matière noire, dont la gravité allait pousser le gaz à se concentrer en structures complexes. Puis, avec l’expansion et le refroidissement ambiant, une partie de cette matière allait elle-même se concentrer en d’immenses sphères, qui attireraient le gaz. L’augmentation de la pression à l’intérieur de ces halos, comme les astronomes vont les nommer, poussa les atomes d’hydrogène à fusionner, formant ainsi des atomes d’hélium et allumant les premières étoiles de l’Univers primordial.

Émerveillé, j’observe ces prémices de l’aube cosmique à travers des lunettes 3D. Assis face à un projecteur à l’Institut Kavli d’astrophysique des particules et de cosmologie de l’université Stanford, aux États-Unis, je suis du regard des filaments de matière noire qui forment sur l’image un réseau gris fantomatique entre les halos au fur et à mesure que l’Univers s’étend. Des maelströms d’étoiles venant de naître s’enroulent en spirales au centre de ces derniers pour former les premières galaxies.

Depuis des décennies, les scientifiques travaillent au récit de l’origine de l’Univers. Mais, l’an dernier, le télescope spatial le plus perfectionné jamais construit a changé la donne. Le James Webb Space Telescope (JWST) a mis au jour d’anciennes galaxies, plus nombreuses et actives que prévu, dévoilant ainsi un prologue frénétique à la saga de l’espace et du temps.

Le télescope James Webb ne peut cependant pas distinguer les premières étoiles, pas encore assez brillantes pour être détectées. Il faudra attendre qu’elles rayonnent pendant quelques millions d’années avant d’exploser en supernovae – une parenthèse à l’échelle du temps astronomique.

" En fait, nous avons un peu ralenti les images, me confie le cosmologiste Tom Abel. Ça va tellement vite. La version complète aurait été constituée de flashes beaucoup plus rapides. "

Ces flashes, en fait des supernovae nées d’étoiles dont la masse peut atteindre des centaines de fois celle du Soleil, ont généré de nouveaux éléments qui ont transformé l’Univers : oxygène (nécessaire à la formation de l’eau), silicium (à celle des planètes), ou encore phosphore (indispensable aux cellules). Ces premières étoiles ont aussi cassé les atomes d’hydrogèn locaux, contribuant à rendre l’espace transparent, moment clé connu sous le nom de " réionisation ". À mesure que la brume se levait, des poches d’astres ont fusionné, formant des agglomérats tourbillonnants toujours plus vastes – dont les premiers éléments de notre Voie lactée.

Tom Abel a commencé à modéliser la naissance des premières étoiles dans les années 1990, alors que la nature du premier objet astronomique restait une énigme : s’agissait-il d’un trou noir, d’un corps de la taille de Jupiter, ou d’autre chose ? Par ses simulations informatiques, il a contribué avec ses collègues à établir qu’il devait s’agir d’étoiles, nées là où la gravité l’avait lentement emporté sur la pression du gaz. Il pensa alors qu’il n’y avait plus rien à apprendre.P

Puis vint le télescope James Webb.L

Lancé le matin de Noël 2021, le télescope spatial est maintenant positionné à 1,5 million de kilomètres de la Terre. Son miroir primaire de 6,5 m recouvert d’or capte une lumière qui a traversé l’espace pendant plus de 13 milliards d’années, nous révélant le visage d’alors des premières galaxies.

Les astronomes s’attendaient à détecter des galaxies naissantes. Mais ils ne pensaient pas en trouver autant, ni que cela puisse bouleverser leur compréhension des choses.

Dans cette région de la nébuleuse d’Orion, le rayonnement ultraviolet venant d’un amas d’étoiles voisin provoque d’intenses réactions chimiques. Le JWST y a découvert des cations méthyles. Ce composé carboné – encore jamais détecté dans l’espace – facilite la formation de molécules complexes nécessaires à la vie.

(photo : Dans cette région de la nébuleuse d’Orion, le rayonnement ultraviolet venant d’un amas d’étoiles voisin provoque d’intenses réactions chimiques. Le JWST y a découvert des cations méthyles. Ce composé carboné – encore jamais détecté dans l’espace – facilite la formation de molécules complexes nécessaires à la vie.)

L'étude des galaxies la plus poussée jamais entreprise a débuté en septembre 2022, quand l’équipe internationale du JADES (JWST Advanced Deep Extragalactic Survey) a commencé à braquer le télescope sur des régions du ciel des dizaines d’heures d’affilée. Deux semaines plus tard, elle se réunissait à Tucson, à l’université de l’Arizona, pour discuter des premiers résultats.

Quelque cinquante astronomes se sont entassés dans une salle de classe, certains restant debout au fond de la pièce ou apportant des chaises supplémentaires pour pouvoir s’asseoir le long des murs.

Tous les scientifiques présents scrutaient avec fébrilité sur leurs ordinateurs une mosaïque de centaines d’images fraîchement capturées, partagée quelques jours auparavant. Elle contenait des dizaines de milliers de galaxies et autres objets célestes, et des murmures enthousiastes se faisaient entendre à mesure que les participants s’indiquaient des choses jamais vues jusque-là : des régions remplies d’étoiles en formation, des centres galactiques incandescents où pourraient se cacher des trous noirs, des taches de lumière rougeâtres provenant de galaxies si éloignées que seul le télescope James Webb pouvait les détecter. " On était comme des enfants dans un magasin de bonbons ", me raconte Marcia Rieke, astronome à l’université de l’Arizona et l’une des responsables du programme JADES.

Contrairement au télescope Hubble, notre précédente fenêtre sur le passé lointain, le télescope James Webb observe l’Univers dans l’infrarouge – ce qui en fait un instrument idéal pour capturer les rayons des premières étoiles, émis sous forme d’ultraviolets mais dont les longueurs d’ondes, étirées par l’expansion de l’Univers, se sont ensuite décalées vers le rouge. Plus ce décalage est prononcé, plus la cible est éloignée et donc ancienne.

Marcia Rieke a supervisé les débats avec un mélange de joie et de rigueur, répondant aux questions techniques ou discutant du fonctionnement du télescope. En plus d’être l’une des chercheuses les plus éminentes du JADES, elle est la responsable principale de la caméra dans le proche infrarouge (NIRCam) du JWST – à l’origine de la mosaïque de galaxies source de tant d’émoi. Elle a supervisé la conception de l’appareil de 150 kg, un assemblage de miroirs, de lentilles et de détecteurs permettant d’absorber la lumière de l’Univers et de l’étudier à travers différents filtres. "Ces images sont à la hauteur de toutes nos espérances ", souligne-t-elle.

Pour autant, tout ne fonctionne pas parfaitement sur le télescope. Son spectrographe dans le proche infrarouge (NIRSpec) a connu des courts-circuits, qui ont créé des taches claires sur certaines cibles visées. L’instrument a pour fonction de scinder la lumière en spectres, ce qui permet aux scientifiques de reconstituer la composition chimique d’une galaxie et de mesurer précisément son décalage vers le rouge. Si les images de la NIRCam peuvent aider à estimer les distances des galaxies, on a besoin du NIRSpec pour les confirmer. Les courts-circuits ont retardé certaines observations, ce qui fut un mal pour un bien. Car, si les astronomes avaient prévu d’utiliser le NIRSpec pour examiner des objets connus grâce au télescope spatial Hubble, ils pouvaient désormais changer de cibles et s’intéresser aux galaxies tout juste découvertes par la NIRCam. " Nous sommes devenus fous en les traquant dans ces données que personne n’avait jamais vues ", me glisse Kevin Hainline, astrophysicien à l’université de l’Arizona.

Une chose que l’équipe ne pouvait pas faire, c’était changer l’orientation du télescope. Par chance, quatre galaxies lointaines se trouvaient dans son champ de vision. Deux d’entre elles, comme le confirmerait le NIRSpec, étaient plus éloignées et plus vieilles qu’aucune autre connue.

La plus distante, JADES-GS-z13-0, s’était formée juste 325 millions d’années après le big bang. " Dans toute cette folie, je n’ai pas réalisé la portée de ce moment où j’étais assis là, à me dire : - Oh ! C’est la galaxie la plus lointaine que l’homme ait jamais vue !”, raconte Kevin Hainline.

Deux choses sont déjà claires à leur propos : elles sont plus nombreuses que prévu, et étonnamment brillantes pour leur âge. Ces anomalies pourraient être dues au fait que les premières étoiles qui les constituent se sont formées plus facilement qu’on le pensait, ou qu’il y avait plus d’étoiles massives que ce qui était envisagé.

Une des premières galaxies, GN-z11, datant d’environ 440 millions d’années après le big bang, était suffisamment brillante pour que Hubble la repère dès 2016. Le JWST l’a aussi observée et a capté son spectre avec le NIRSpec. " Celle-là a à la fois déconcerté et enthousiasmé tout le monde ", note Emma Curtis-Lake, astrophysicienne à l’université du Hertfordshire, en Angleterre, et membre de l’équipe du NIRSpec.

Certains éléments chimiques génèrent des raies d’émission brillantes dans le spectre d’une galaxie, telles des empreintes digitales que laisserait derrière elle la matière galactique. Le spectre de GN-z11 a révélé une quantité étonnante d’azote – ce qui a surpris les scientifiques, incapables d’en expliquer la source. Il est possible qu’une population d’étoiles de Wolf-Rayet, très chaudes et très actives, ait dispersé cet élément via des vents stellaires. À moins que plusieurs étoiles massives soient entrées en collision, libérant de l’azote dans le processus.

Les galaxies lointaines ne sont pas le seul moyen d’en savoir plus sur l’Univers primordial. Des galaxies naines proches contiennent de petites étoiles qui se sont formées très tôt et existent toujours. C’est le cas de la galaxie de Wolf-Lundmark-Melotte (en haut, à gauche, sur une image du VST, le télescope de sondage du VLT, de l’Observatoire européen austral, ou ESO, au Chili). Le JWST en a scruté l’intérieur (voir les images ci-dessous) pour étudier quelques-unes de ces anciennes étoiles à combustion lente – fossiles des époques passées.

(PHOTO du european southern observatory : GN-z11 pourrait aussi abriter un trou noir supermassif en son centre, ce qui serait remarquable pour cette époque primitive. Il serait " le trou noir le plus éloigné identifié ", pointe l’astrophysicienne. Caché, il a été révélé par des raies spectrales qui suggèrent que de la matière se déplace dans une zone dense, tourbillonnant à plus de 1,5 million de kilomètres à l’heure – le genre de chose auxquelles on s’attend près d’un trou noir. Mais comment ce dernier a pu se développer aussi vite, donc tôt, reste un mystère.)

George, le mari de Marcia Rieke, lance, en entrant dans une salle de contrôle servant aussi de kitchenette :  Ce n’est plus comme avant. " Son épouse confirme : " Non, il y a cinq fois plus d’écrans. " Le couple a proposé de me montrer un vieux télescope dans les montagnes, près de Tucson, où ils ont passé une grande partie de leur début de carrière. Tous deux astronomes à l’université de l’Arizona, ils se sont rencontrés en 1972. Le télescope de 1,5 m du mont Bigelow était alors assez récent et servait à cartographier la surface de la Lune. Il est devenu l’un des principaux observatoires dans le domaine naissant de l’astronomie infrarouge. Une sorte d’aïeul du télescope James Webb.

Les Rieke ont contribué à assurer la passation entre les deux instruments. Alors que Marcia supervisait le développement de la NIRCam, George était en charge du MIRI (Mid-Infrared Instrument – pour des mesures dans l’" infrarouge moyen ") du JWST. Restant éveillés des nuits entières, ils ajustaient lentement l’engin pour qu’il garde une cible en vue pendant que

la Terre tournait. Aujourd’hui, leurs assistants peuvent faire la plus grande partie de ce travail à partir d’ordinateurs portables. " Une bande de chiffes molles ", plaisante George.

Dans les années 1970, le couple a effectué au mont Bigelow quelques-unes des premières observations dans l’infrarouge du centre de la Voie lactée. Les scientifiques tenaient alors cette zone de notre galaxie pour " une collection de vieilles étoiles sans intérêt ", se rappelle Marcia. Mais, dans cette lumière infrarouge, des poches de gaz turbulentes accueillant la formation rapide d’étoiles sont apparues. " Tout le tableau en a été changé ", note George.

À l’époque, la lumière infrarouge commençait tout juste à être étudiée en astronomie. Le développement de nouveaux capteurs a peu à peu permis de révéler cette immense partie jusque là ignorée du spectre électromagnétique – allant des rayons gamma aux ondes radio. Le télescope du mont Bigelow a permis de combler une lacune dans l’observation de l’Univers local, et le JWST est ensuite venu compléter notre vision du cosmos lointain.

Mais, pour comprendre vraiment nos origines cosmiques, le télescope spatial ne suffira pas.

Par un matin d'avril, je me suis retrouvé sur un plateau entre des volcans enneigés du désert d’Atacama, au Chili, plissant les yeux dans le soleil. Des tubes en plastique m’apportent un complément d’oxygène, précaution nécessaire quand on rejoint le Grand Réseau millimétrique /submillimétrique de l’Atacama (ALMA), un télescope situé à 5 000 m d’altitude.

Le ciel est d’un bleu plus profond, avec une atmosphère moins dense en molécules risquant de disperser la lumière – un lieu idéal pour l’astronomie. D’où les dizaines d’antennes paraboliques hautes de quatre étages se dressant face à moi, comme autant de sentinelles disséminées sur le plateau andin de Chajnantor. Dans un étonnant ballet, toutes pivotent de conserve quand elles se fixent sur une nouvelle cible.

Le nuage moléculaire géant de Rho Ophiuchi est la pouponnière d’étoiles la plus proche de la Terre. Une cinquantaine d’étoiles y naissent dans des cocons de gaz et de poussière, la plupart de masse similaire au Soleil. En bas, une étoile plus puissante crée une cavité géante.

Observatoire de radioastronomie parmi les plus perfectionnés de la planète, l’ALMA est aussi l’un des rares outils capables de percevoir les galaxies primitives découvertes par le JWST, bien qu’avec une approche différente. Le télescope spatial capte la lumière des étoiles perçant à travers la poussière des galaxies ; tandis que l’ALMA traque la luminosité de la poussière elle-même, chauffée par les étoiles situées à l’intérieur de ces galaxies. " Ces grains de poussière proviennent de l’explosion de supernovae, ce qui permet d’obtenir indirectement des informations sur elles et, partant, sur la première population d’étoiles ", explique María Emilia De Rossi, astrophysicienne à l’Institut d’astronomie et de physique de l’espace (IAFE) à Buenos Aires.

L’ALMA a donc orienté ses antennes paraboliques vers certaines des galaxies primordiales. Mais, lors de ses premières tentatives, il n’a souvent pas été en mesure de détecter d’émission de la poussière. Cela pourrait signifier que les galaxies sont encore à un stade embryonnaire et qu’il n’y a pas assez de poussière générée par des explosions stellaires – ou bien que certaines sont en fait plus proches qu’on ne le pensait.

Dans un cas, l’ALMA a toutefois bien détecté une raie d’émission à côté d’une cible du JWST, suggérant que les étoiles de la galaxie ont dispersé leur poussière, ou alors que deux galaxies dans des phases différentes de leur vie sont en train de fusionner.

Mais ces premières tentatives de l’ALMA pour détecter les galaxies découvertes par le JWST n’étaient que des aperçus fugitifs : des observations plus longues sont désormais prévues. Elles pourraient révéler la quantité de poussière et, surtout, le nombre d’éléments lourds produits – témoins du stade d’évolution des galaxies. Lors de ma visite, deux de ses imposantes antennes avaient été démontées à des fins d’amélioration. Bientôt, elles retourneront sur le plateau de Chajnantor et poseront un regard encore plus performant vers le firmament pour s’attaquer aux mystères des galaxies primordiales.


 

 

Auteur: Internet

Info: Jay Bennett, 1 aout 2024, Source : national geographic 2023

[ astrométrie ]

 

Commentaires: 0

Ajouté à la BD par miguel

trouble dépressif post-accouchement

Il y a quatre ans, alors que mon fils n’avait qu’un mois, lui et moi avons été admis dans une unité mère-bébé, un service psychiatrique qui s’occupe des personnes souffrant de problèmes de santé mentale périnatale et de leurs bébés. On a diagnostiqué chez moi une anxiété et une dépression post-partum sévères et on m’a mise sous traitement. J’ai eu des séances hebdomadaires avec l’équipe psychiatrique pour discuter de mes progrès, et mon fils et moi avons passé du temps avec les autres femmes du service et leurs bébés. Chaque jour, parfois deux fois par jour, mon mari venait nous voir et nous nous promenions dans Hackney tandis que j’essayais de me rappeler qui j’étais autrefois et de résister à la tentation de me jeter devant une voiture. Petit à petit, horriblement, douloureusement lentement, je me suis un peu améliorée. Au bout de huit semaines, nous avons reçu notre congé et sommes rentrés chez nous.

Mais si je n’étais plus en situation de crise, ma santé mentale était extrêmement fragile. J’avais des appels hebdomadaires avec une thérapeute du NHS qui abordait ma maladie de manière méthodique et précise. Elle m’expliquait ce qui m’arrivait et pourquoi c’était arrivé. Je voulais désespérément mettre tout cela sur le compte des hormones, je voulais fuir la version corrompue de moi-même et ne plus jamais penser à elle, je voulais la rayer de mon cœur, de mon esprit, l’enterrer et cracher sur sa tombe. J’étais tellement gênée et honteuse d’elle, je la détestais. Mais mon thérapeute m’a gentiment rappelé que ce n’était pas seulement dû aux hormones et que je devais trouver un moyen de l’accepter.

Deux mois plus tard, je n’avais toujours pas toute ma tête, j’étais toujours tourmentée par le fait que j’avais imaginé faire des choses terribles et maléfiques à mon fils. Je savais que ces pensées intrusives étaient dues à ma maladie, mais cela ne les rendait pas plus faciles à vivre. C’est à ce moment-là que j’ai commencé à penser aux sorcières. Même si, pour être honnête, j’ai toujours pensé aux sorcières. C’est le cas de nombreuses femmes. Même cette année, pour Halloween, mon fils voulait être la sorcière de Room on the Broom – ce qui était ennuyeux parce que je lui avais déjà acheté un costume de squelette. Et beaucoup de femmes ont une sorcière préférée : Glinda du Magicien d’Oz, Les sorcières d’Eastwick, Samantha dans Bewitched et, pour ma part, Mildred Hubble (La pire des sorcières).

Les sorcières représentent le pouvoir féminin et peuvent être une célébration de notre puissance, mais elles sont aussi souvent utilisées comme l’incarnation des anciennes peurs de la société à l’égard des femmes. Par conséquent, beaucoup d’entre nous ont peur de devenir des sorcières, de se transformer en sorcières et en biques en vieillissant, d’être poussées à l’écart de leur communauté, d’être tournées en dérision, d’être ignorées, d’être hideuses. Pour d’autres, les sorcières représentent des femmes incontrôlables – elles nous montrent les dangers d’une femme déséquilibrée, une mégère qui ne fait pas ce qu’on lui dit de faire. Mais je pense que pour moi, en ce mois de décembre gris et silencieux, encore plongée dans ma folie, les sorcières représentaient l’espoir.

Les mauvaises sorcières sont devenues une aspiration. Elles m’ont fait sentir que je n’étais pas seule

J’ai dressé une liste de tous les films de sorcières auxquels je pouvais penser et je les ai regardés un par un pendant que mon fils dormait sur ma poitrine. Ce faisant, j’ai trouvé des liens et du réconfort. Mais alors que j’avais aimé les " bonnes " sorcières, roses et maternelles, qui n’utilisaient leur pouvoir que pour changer de tenue ou aider une amie, j’étais de plus en plus attirée par les " mauvaises "  sorcières. La méchante sorcière de l’Ouest n’avait peut-être pas tort lorsqu’elle s’écriait " Quel monde, quel monde, quel monde ! " en se fondant dans un sol de pierre froide.

J’ai réalisé qu’en fait, ce dont j’avais besoin, c’était d’avoir le courage d’accepter que la personne que je considérais comme mauvaise, pathétique et malade était, en fait, moi. Après cela, les méchantes sorcières sont devenues une source d’inspiration. Elles m’ont donné l’impression que je n’étais pas seule. Peut-être que je n’étais pas mauvaise. Peut-être n’étais-je qu’une sorcière ?

Au cours de l’été 1645, Matthew Hopkins, l’un des plus célèbres " découvreurs de sorcières " à parcourir le pays avec ses petites bottes à talons, est arrivé dans le Suffolk. À cette époque, les procès en sorcellerie se déroulent en Angleterre depuis plus de 60 ans, et Hopkins est réputé pour découvrir des sorcières partout où il passe. Pendant les pauses cinéma, alors que mon fils buvait du lait maternisé au biberon (je vous ai dit que j’étais méchante), j’ai lu les témoignages des femmes accusées dans ce procès.

Anna Moats avait avoué volontairement dans les deux heures qui avaient suivi son arrestation. Et l’acte diabolique qu’elle avait commis ? " Maudire son mari et ses enfants ". Anna savait qu’en avouant être une sorcière, elle serait mise dans une charrette et conduite dans les rues, avant d’être pendue à la potence, sous les yeux de ses amis, de sa famille et peut-être même de ses enfants. Et pourtant, elle a avoué.

En 1645, Matthew Hopkins était connu pour avoir découvert des sorcières partout où il allait

J’ai appelé Marion Gibson, professeur de Renaissance et d’études magiques à l’université d’Exeter, et je lui ai demandé pourquoi une personne comme Anna avouait – était-ce à cause de la torture ? " Non, les sorcières n’étaient pas torturées en Angleterre". Ma voix s’est bloquée dans ma gorge. Certaines femmes ont donc avoué sans avoir été torturées ? " Oui. Et elles savaient qu’elles allaient mourir ?  Oui. Et personne n’est sûr de savoir pourquoi elles ont fait ça. " Huh. J’ai une théorie.

Pour clarifier, s’il n’y a pas eu de torture, ils ont eu recours à la privation de sommeil et à l’intimidation. Ils ont également fouillé le corps nu des femmes à la recherche de marques du diable, ce qui aurait conduit à de nombreux aveux forcés. Cependant, grâce aux recherches du professeur Louise Jackson, j’ai appris que dans quelques dépositions du Suffolk, les aveux avaient été faits " librement ". Matthew Hopkins a écrit que Rebecca Morris " a avoué, avant toute violence, observation [privation de sommeil] ou autre menace ", que le diable était venu à elle sous la forme d’un garçon. Alicia Warner " a avoué librement qu’elle avait entretenu certains esprits maléfiques ". Eliza Southerne a avoué immédiatement : " Le ministre n’a utilisé aucun autre argument pour la faire avouer… [il s’est contenté] de lui dire de faire le mal elle-même, mais de libérer sa conscience ".

Très peu de recherches ont été menées sur ces " aveux volontaires " et sur les raisons pour lesquelles ces femmes étaient si prêtes à se condamner à mort. Mais en lisant leurs témoignages, j’ai eu l’impression de savoir. En faisant défiler les conversations téléphoniques que j’ai avec les femmes de ma vie, j’ai eu l’impression de savoir. La culpabilité et la honte que tant d’entre nous ressentent parce qu’elles ne sont pas assez bonnes. La pression suffocante que nous ressentons pour être parfaites. Comme l’écrit le professeur Louise Jackson, " dans la production des aveux, la coercition était autant culturelle que physique. Les cadres de croyance concernant les rôles, les responsabilités et les attentes des femmes les conduisaient à se condamner elles-mêmes… Les femmes du Suffolk qui avouaient être des sorcières avouaient également qu’elles étaient de ‘mauvaises’ mères, de ‘mauvaises’ épouses et de ‘mauvaises’ voisines… " À mon avis, peu de choses ont changé. Ils n’ont pas besoin de nous torturer, nous le ferons nous-mêmes.

Elizabeth Sankey : " Ce qu’il me fallait, c’était le courage d’accepter que la personne que je considérais comme mauvaise, pathétique et malade, c’était en fait moi ".

J’ai également vu des descriptions de maladies mentales dans les confessions. À l’époque, les tentatives de suicide et la dépression étaient presque toujours liées au diable, et ces idées figurent en bonne place dans les témoignages des femmes. Lidea Taylor a avoué " que ses diablotins… lui conseillaient de se tuer ". Ellen Greenelif a avoué qu’" elle était souvent tentée de se tuer ". Elizabeth Fillet a avoué que " le diable l’a tentée de se tuer ". J’ai également constaté des signes de dépression post-partum et de psychose. Prissilla Collit a avoué que le diable l’avait tentée de tuer ses enfants. Elle a placé l’un de ses enfants près du feu pour le brûler, mais un frère ou une sœur l’a éloigné. Mary Scrutton a avoué que " le diable lui est apparu deux fois, une fois sous la forme d’un ours, une fois sous la forme d’un chat, et l’a tentée, d’une voix creuse, de tuer son enfant ". Susanna Smith a avoué le lendemain de son arrestation que 18 ans auparavant, le diable lui était apparu sous la forme d’un chien rouge hirsute et l’avait tentée de tuer ses enfants.

J’ai contacté le Dr Trudi Seneviratne, une psychiatre qui a sauvé d’innombrables vies grâce à son travail à l’unité Bethlem Mother and Baby, qui fait partie de l’hôpital South London and Maudsley. Elle a hoché la tête en lisant les témoignages de 1645, reconnaissant les symptômes d’une maladie mentale post-partum. Elle a déclaré qu’aujourd’hui encore, le diable apparaît dans les cas de psychose, les femmes se voient comme des sorcières, entendent des voix sataniques qui leur disent de faire des choses terribles.

L’un des cas les plus tragiques de psychose post-partum s’est produit en 2001 lorsque Andrea Yates, une mère texane, a noyé ses cinq enfants dans la baignoire au cours d’un épisode psychotique. Yates a déclaré plus tard qu’elle pensait être une mauvaise mère et qu’elle les avait condamnés à l’enfer. Lorsque j’ai lu l’histoire d’Andrea et de sa famille, j’ai sangloté. Bien que je ne sois pas atteinte de psychose, je savais à quel point j’avais été proche de son expérience. Nombre de mes symptômes étaient similaires aux siens – manie, agitation, dépression.

Beaucoup de mes symptômes étaient similaires à ceux d’Andrea – manie, agitation, dépression

J’étais renfermée, je pleurais, mon anxiété était telle que je n’arrivais pas à dormir. Le plus alarmant, cependant, c’est que quelques jours avant mon admission à l’hôpital, j’ai commencé à croire que mettre fin à la vie de mon fils était le seul moyen d’échapper à la torture que je subissais. Si je n’avais pas reçu d’aide aussi rapidement, qui sait ce qui se serait passé ? Les femmes atteintes de ces maladies peuvent voir leur état se détériorer très rapidement. Les symptômes de la psychose du post-partum apparaissent généralement dans les heures ou les jours qui suivent l’accouchement et la présentation peut changer en quelques minutes. Pour un patient souffrant de psychose en général, il faut parfois des mois pour observer les mêmes changements. C’est l’un des rares cas où un épisode psychiatrique est considéré comme une urgence.

Je pense tout le temps à Andrea. Elle vit actuellement dans un hôpital psychiatrique d’État à faible sécurité et, bien qu’elle puisse être libérée depuis de nombreuses années, elle refuse toujours. Heureusement, les cas comme le sien ne sont pas courants, mais ils se produisent encore. Alors qu’au Royaume-Uni, la loi sur l’infanticide, qui a été réadoptée en 1938, prévoit des peines plus légères pour une mère qui tue son enfant au cours de la première année de sa vie, aux États-Unis, il n’existe pas de protection de ce type.

Le 4 janvier 2023, Lindsay Clancy, du Massachusetts, a étranglé ses trois enfants, puis s’est ouvert les veines et a sauté par la fenêtre. Elle a survécu, mais pas ses enfants. Aujourd’hui paralysée à partir de la taille, elle est jugée pour homicide. Mme Clancy, dont le plus jeune enfant n’avait que huit mois lorsqu’il est mort, a déclaré qu’elle avait étranglé les enfants pendant un " moment de psychose ". L’accusation la dépeint comme une sociopathe qui a assassiné ses enfants, puis simulé une tentative de suicide. Ils affirment qu’elle se comportait normalement le jour de la tragédie et qu’elle n’avait jamais mentionné quoi que ce soit suggérant une crise psychotique, juste " une pointe d’anxiété post-partum ".

Mes amis et ma famille m’ont incroyablement soutenue pendant ma maladie

Toute femme ayant souffert d’une maladie mentale périnatale ne sera pas surprise de constater que Clancy était réticente à parler explicitement de ce qui lui arrivait. Mes amis et ma famille m’ont incroyablement soutenue pendant ma maladie, mais j’avais peur de leur dire tout ce que je pensais et ressentais. Notamment comment, dans les jours précédant mon hospitalisation, mon cerveau s’était mis à jouer en boucle des scènes horribles. Je me voyais étouffer notre fils avec un oreiller, le faire tomber d’une fenêtre au troisième étage, le noyer dans la baignoire. Et pourtant, je l’aimais plus que je n’avais jamais aimé qui que ce soit ou quoi que ce soit. C’était si effrayant, si horrible. Je ne voulais pas les accabler, mais je ne voulais pas non plus que ce soit vrai. Alors je me convainquais que je faisais toute une histoire pour rien.

Ce qui a finalement fait basculer les choses pour moi, c’est de rejoindre Motherly Love, un groupe de soutien composé de femmes d’horizons différents ayant connu des problèmes de santé mentale périnatale. Toutes ont compris. Quelles que soient les pensées terrifiantes que j’avais, quelqu’un d’autre les avait eues aussi et avait survécu. Le groupe est devenu une source vitale d’espoir, de soutien et de connaissances anecdotiques, qui ne semblaient accessibles nulle part ailleurs. Ce sont ces femmes qui ont reconnu la gravité de mes symptômes et qui m’ont poussée à me faire soigner immédiatement. Elles m’ont sauvé la vie simplement en partageant leurs sentiments et en veillant à ce que je sache que je n’étais pas seule.

Le suicide reste la principale cause de décès maternel entre six semaines et douze mois après la naissance, représentant 39 % des décès au cours de cette période. Et malgré l’augmentation des financements et de la sensibilisation, les taux de suicide ont augmenté de 15 % en dix ans. Je pense que cela est dû en grande partie à la pression étouffante que subissent les femmes pour être parfaites.

Ma maladie a commencé avec les hormones, mais elle a été exacerbée par la stigmatisation, la culpabilité et la honte qui ont commencé dès que j’ai quitté l’hôpital avec mon petit garçon et que j’ai réalisé que j’avais ouvert la porte d’une autre chambre de torture pour les femmes. Nous devons être des mères et, lorsque nous sommes mères, nous devons être des mères parfaites. Nous devons allaiter nos bébés, ils doivent bien dormir, s’ils sont gardés, il faut que ce soit la meilleure des gardes, nous devons faire des carrières à mort, tout en étant présentes et calmes pour nos enfants, nous devons rester jeunes, nous ne pouvons pas prendre de poids. Nous devons être sages. Et surtout, nous devons être performantes.

C’est impossible, nous le savons toutes, et pourtant nous continuons à essayer, à échouer, et lorsque nous échouons, nous intériorisons la honte et la culpabilité parce que c’est ce que nous avons été conditionnés à faire, et cela nous ronge.

Ma maladie m’a changée à bien des égards, mais je pense que le plus grand cadeau qu’elle m’ait fait est de me faire prendre conscience qu’il y a une infinité de façons d’être une femme. Et j’ai renoncé à être une bonne mère – j’ai échoué après seulement un mois. Ce qui est en fait incroyablement libérateur. Ces jours-ci, je me sens tellement chanceuse d’être encore là. De tenir le corps chaud de mon fils chaque matin à son réveil, de le regarder manger une part de gâteau d’anniversaire dans un silence extatique. J’ai de la chance d’avoir eu l’occasion d’accepter et même d’aimer cette version sombre et tordue de moi-même que je détestais tant autrefois. Elle me manquerait si elle disparaissait. Et j’ai beaucoup de chance de pouvoir vieillir. Beaucoup trop d’entre nous n’ont pas cette chance. J’ai l’intention de voler vers lui comme la sorcière que je suis, sauvage et folle, insuffisante et imparfaite.



 

Auteur: Internet

Info: The Guardian. Au plus profond de ma folie, les sorcières m’ont donné de l’espoir : Elizabeth Sankey parle de maternité, de dépression et de sorcières.Le documentaire d’ES, Witches, fut diffusé sur MUBI fin 2024

[ femmes-entre-elles ] [ baby blues ] [ pensée-de-femme ]

 

Commentaires: 0

Ajouté à la BD par miguel

homme-animal

Le processus d’encéphalisation
Parmi l’ensemble des animaux non-humains, les dauphins sont dotés du quotient encéphalique le plus élevé au monde, soit à peu près celui de l’être humain.
A ce petit jeu, d’ailleurs, le cachalot nous dépasse tous largement !
Une telle augmentation du volume cérébral, bien au-delà des simples besoins de la motricité ou de la sensorialité, est qualifiée "d’encéphalisation structurelle".
Ce phénomène n’est pas rare. Il semble que dès le Jurassique, des dinosauriens bipèdes de taille moyenne aient commencé à augmenter de manière encore timide leurs capacités cérébrales.
Au Tertiaire, les ancêtres des éléphants et des cétacés se sont lancés à leur tour dans la course au gros cerveau mais ce n’est qu’au Quaternaire, il y a de cela de trois à six millions d’années, que certains primates hominoïdes développent une boîte crânienne de type néoténique à fontanelles non suturées durant les premiers temps de l’enfance, afin de permettre une croissance ultérieure de l’un des cerveaux les plus puissants du monde.
Ce processus d’encéphalisation apparaît également chez certains oiseaux – corvidés, psittacidés – à peu près vers la même époque. A chaque fois, bien sûr, des comportements très élaborés sont toujours associés à un accroissement spectaculaire du tissu cérébral.
Une si curieuse convergence de formes, la survenance simultanée ou successive de tous ces "grands fronts", pose bien évidemment question en termes darwiniens.
Le ptérodactyle, la mouche, le colibri, la chauve-souris ont des ailes pour voler, la truite, l’ichtyosaure, le marsouin ont un corps fait pour nager, le grillon fouisseur et la taupe ont des pattes en forme de pelles pour creuser, etc.
Mais à quoi rime dès lors un vaste crâne et à quelle fonction est-il dévolu ?
Essentiellement à comprendre le monde et ceux qui le composent, en ce compris les membres de sa propre espèce, avec lesquels il faut sans cesse gérer une relation équilibrée.
Même les gros cerveaux les plus solitaires vivent en fait en société : tigres, baleines bleues, panthères, orangs-outans gardent des liens étroits, bien que distants ou différés, avec leur fratrie et leurs partenaires.
L’intelligence est à coup sûr l’arme suprême contre les aléas du monde, ses mutations incessantes, puisqu’elle permet notamment de gérer un groupe comme un seul corps mais aussi de pénétrer les lois subtiles qui sont à la base du mouvement des choses.
En augmentant d’un degré supérieur ces facultés par le moyen du langage, lequel conserve le savoir des générations mortes, l’homme et le cétacé ont sans doute franchi un nouveau pas vers une plus grande adaptabilité.
Le problème de l’humain, mais nous n’y reviendrons pas davantage, c’est qu’il ne s’est servi jusqu’à ce jour que d’une partie de son intelligence et qu’il se laisse ensevelir vivants dans ses propres déchets, et avec lui les reste du monde, pour n’avoir pas su contrôler sa propre reproduction ni la saine gestion de son environnement.
Intelligents ou non ? (Le point de vue de Ken Levasseur)
Dans un courrier CFN posté en avril 2003 relatif à l’utilisation de dauphins militaires en Irak, Ken Levasseur, l’un des meilleurs spécialistes actuels de cette question, a tenu à faire le point à propos de l’intelligence réelle ou supposée de ces mammifères marins. Aux questions que lui avait adressées un étudiant sur ce thème, Ken répond ici de manière définitive, sur la base de de son expérience et de ses intimes convictions.
Eu égard aux remarquables recherches menées par Ken depuis des années et au fait qu’il a travaillé longtemps aux côtés du professeur Louis Hermann, son point de vue n’est évidemment pas négligeable ni ses opinions sans fondements. On lira d’ailleurs sur ce site même son article en anglais relatif au cerveau du dauphin
Inutile de dire que le gestionnaire de ce site partage totalement le point de vue de Ken Levasseur, dont les travaux l’inspirent depuis de nombreuses années, au même titre que ceux de Wade Doak ou de Jim Nollman : tous ont en commun d’affirmer que les dauphins ne sont pas des animaux au sens strict mais bien l’équivalent marin de l’humanité terrestre.
Q- A quel niveau d’intelligence réelle les dauphins se situent-ils ? A celui du chien ? Du grand singe ? D’un être humain ?
R- Mon meilleur pronostic est qu’un jour prochain, nous pourrons prouver que la plupart des espèces de cétacés disposent d’une intelligence équivalente ou supérieure à celle d’un humain adulte.
Q- Quelles sont les preuves nous permettant d’affirmer que les dauphins sont intelligents ?
R- Il a été démontré depuis longtemps que les dauphins peuvent développer des capacités cognitives qui équivalent ou excèdent les possibilités mentales de l’être humain. Aujourd’hui, nous sommes à même de définir exactement en quoi consiste l’intelligence humaine. Une fois que nous parviendrons à définir l’intelligence d’une manière strictement objective et valable pour toutes les autres espèces, on permettra enfin aux cétacés de faire la preuve de la leur.
Q- Quelles preuves avons-nous que les dauphins ne sont PAS intelligents ?
R- Il n’y a aucune preuve scientifique qui tendrait à prouver que l’intelligence du dauphin serait située entre celle du chien et celle du chimpanzé (comme l’affirment les delphinariums et la marine américaine) .
Q- Est-ce que les dauphins possèdent un langage propre ?
R- La définition d’une "langue", comme celle de l’intelligence, repose sur des bases subjectives définies pour et par les humains. Une fois que nous pourrons disposer d’une définition plus objective de ce qu’est un langage, et que les recherches sur la communication des dauphins ne seront plus "classifiée" par les américains, il est fort probable que les chercheurs puissent enfin conduire les recherches appropriées et qu’ils reconnaissent que les dauphins disposent de langages naturels.
Q- Est-ce leur capacité à apprendre et à exécuter des tours complexes qui les rend plus intelligents ou non ?
R- La capacité du dauphin à apprendre à exécuter des tours complexes est surtout une indication de l’existence d’un niveau élevé des capacités mentales, interprétées comme synonymes d’une intelligence élevée.
Q- Jusqu’à quel point ont été menées les recherches sur les dauphins et leur intelligence ? Que savent vraiment les scientifiques à leur propos ?
R- La US Navy a "classifié" ses recherches sur les dauphins en 1967, au moment où l’acousticien Wayne Batteau est parvenu à développer des moyens efficaces pour communiquer avec des dauphins dressés. La communication et l’intelligence des dauphins constituent donc désormais des données militaires secrètes, qui ne peuvent plus être divulguées au public.
Q- Est-ce que les dauphins disposent d’un langage propre ? Y a t-il des recherches qui le prouvent ?
R- Vladimir Markov et V. M. Ostrovskaya en ont fourni la preuve en 1990 en utilisant la "théorie des jeux" pour analyser la communication des dauphins dans un environnement contrôlé et à l’aide de moyens efficaces. Il est donc très probable que les dauphins aient une langue naturelle.
Q- Les capacités tout à fait spéciales des dauphins en matière d’écholocation ont-elles quelque chose à voir avec leurs modes de communication?
R- A mon sens, les recherches futures fourniront la preuve que le langage naturel des cétacés est fondé sur les propriétés physiques de l’écholocation, de la même manière que les langues humaines se basent sur des bruits et des représentations.
Q- Quelle est VOTRE opinion à propos de l’intelligence des dauphins ?
R- Pendant deux ans, j’ai vécu à quinze pieds (1 Pied : 30 cm 48) d’un dauphin et à trente-cinq pieds d’un autre. À mon avis, les dauphins possèdent une intelligence équivalente à celle d’un être humain. Ils devraient bénéficier dès lors de droits similaires aux Droits de l’Homme et se trouver protégé des incursions humaines dans son cadre de vie.
Q- La ressemblance entre les humains et les dauphins a-t-elle quelque chose à voir avec leur intelligence commune ?
R- Les dauphins sont très éloignés des humains à de nombreux niveaux mais les ressemblances que nous pouvons noter sont en effet fondées sur le fait que les dauphins possèdent des capacités mentales plus élevées (que la plupart des autres animaux) et sont à ce titre interprétés en tant qu’intelligence de type humain.
Q- La grande taille de leur cerveau, relativement à celle de leur corps, est-elle un indicateur de leur haute intelligence ?
R- Le volume absolu d’un cerveau ne constitue pas une preuve d’intelligence élevée. Le coefficient encéphalique (taille du cerveau par rapport à la taille de corps) n’en est pas une non plus. Néanmoins, on pourrait dire que la taille absolue du cerveau d’une espèce donnée par rapport au volume global du corps constitue un bon indicateur pour comparer les capacités mentales de différentes espèces. Souvenons-nous par ailleurs que les cétacés ne pèsent rien dans l’eau, puisqu’ils flottent et qu’une grande part de leur masse se compose simplement de la graisse. Cette masse de graisse ne devrait pas être incluse dans l’équation entre le poids du cerveau et le poids du corps car cette graisse n’est traversée par aucun nerf ni muscle et n’a donc aucune relation de cause à effet avec le volume du cerveau.
Q- Est-ce que la capacité des dauphins à traiter des clics écholocatoires à une vitesse inouïe nous laisse-t-elle à penser qu’ils sont extrêmement intelligents ?
R- On a pu montrer que les dauphins disposaient, et de loin, des cerveaux les plus rapides du monde. Lorsqu’ils les observent, les humains leur semblent se mouvoir avec une extrême lenteur en émettant des sons extrêmement bas. Un cerveau rapide ne peut forcément disposer que de capacités mentales très avancées.
Q- Pensez-vous des scientifiques comprendront un jour complètement les dauphins?
R- Est-ce que nos scientifiques comprennent bien les humains? Si tout va bien, à l’avenir, les dauphins devraient être compris comme les humains se comprennent entre eux.
Q- Le fait que les dauphins possèdent une signature sifflée est-elle une preuve de l’existence de leur langage ?
R- Non. Cette notion de signature sifflée est actuellement mal comprise et son existence même est sujette à caution.
Q- Les dauphins font plein de choses très intelligentes et nous ressemblent fort. Est-ce parce qu’ils sont vraiment intelligents ou simplement très attractifs ?
R- La réponse à votre question est une question d’expérience et d’opinion. Ce n’est une question qui appelle une réponse scientifique, chacun a son opinion personnelle sur ce point.
Q- Pouvons-nous vraiment émettre des conclusions au sujet de l’intelligence des dauphins, alors que nous savons si peu à leur propos et qu’ils vivent dans un environnement si différent du nôtre ?
R- Jusqu’à présent, ce genre de difficultés n’a jamais arrêté personne. Chacun tire ses propres conclusions. Les scientifiques ne se prononcent que sur la base de ce qu’ils savent vrai en fonction des données expérimentales qu’ils recueillent.
Q- Est-ce que nous pourrons-nous jamais communiquer avec les dauphins ou même converser avec eux ?
R- Oui, si tout va bien, et ce seront des conversations d’adulte à adulte, rien de moins.
II. DAUPHIN : CERVEAU ET MONDE MENTAL
"Parmi l’ensemble des animaux non-humains, les dauphins disposent d’un cerveau de grande taille très bien développé, dont le coefficient encéphalique, le volume du néocortex, les zones dites silencieuses (non motrices et non sensorielles) et d’autres indices d’intelligence sont extrêmement proches de ceux du cerveau humain" déclare d’emblée le chercheur russe Vladimir Markov.
Lorsque l’on compare le cerveau des cétacés avec celui des grands primates et de l’homme en particulier, on constate en effet de nombreux points communs mais également des différences importantes :
– Le poids moyen d’un cerveau de Tursiops est de 1587 grammes.
Son coefficient encéphalique est de l’ordre de 5.0, soit à peu près le double de celui de n’importe quel singe. Chez les cachalots et les orques, ce même coefficient est de cinq fois supérieur à celui de l’homme.
– Les circonvolutions du cortex cervical sont plus nombreuses que celles d’un être humain. L’indice de "pliure" (index of folding) est ainsi de 2.86 pour l’homme et de 4.47 pour un cerveau de dauphin de taille globalement similaire.
Selon Sam Ridgway, chercheur "réductionniste de la vieille école", l’épaisseur de ce même cortex est de 2.9 mm en moyenne chez l’homme et de 1.60 à 1.76 mm chez le dauphin. En conséquence, continue-t-il, on peut conclure que le volume moyen du cortex delphinien (560cc) se situe à peu près à 80 % du volume cortical humain. Ce calcul est évidemment contestable puisqu’il ne tient pas compte de l’organisation très particulière du cerveau delphinien, mieux intégré, plus homogène et moins segmenté en zones historiquement distinctes que le nôtre.
Le fait que les cétacés possèdent la plus large surface corticale et le plus haut indice de circonvolution cérébral au monde joue également, comme on s’en doute, un rôle majeur dans le développement de leurs capacités cérébrales.
D’autres scientifiques, décidément troublés par le coefficient cérébral du dauphin, tentent aujourd’hui de prouver qu’un tel développement n’aurait pas d’autre usage que d’assurer l’écholocation. Voici ce que leur répond le neurologue H. Jerison : "La chauve-souris dispose à peu de choses près des mêmes capacités que le dauphin en matière d’écholocation, mais son cerveau est gros comme une noisette. L’outillage écholocatoire en tant que tel ne pèse en effet pas lourd. En revanche, le TRAITEMENT de cette même information "sonar" par les zones associatives prolongeant les zones auditives, voilà qui pourrait expliquer le formidable développement de cette masse cérébrale. Les poissons et tous les autres êtres vivants qui vivent dans l’océan, cétacés mis à part, se passent très bien d’un gros cerveau pour survivre et même le plus gros d’entre eux, le requin-baleine, ne dépasse pas l’intelligence d’une souris…"
La croissance du cerveau d’un cétacé est plus rapide et la maturité est atteinte plus rapidement que chez l’homme.
Un delphineau de trois ans se comporte, toutes proportions gardées, comme un enfant humain de huit ans. Cette caractéristique apparemment "primitive" est paradoxalement contredite par une enfance extrêmement longue, toute dévolue à l’apprentissage. Trente années chez le cachalot, vingt chez l’homme, douze à quinze chez le dauphin et environ cinq ans chez le chimpanzé.
Les temps de vie sont du même ordre : 200 ans en moyenne chez la baleine franche, 100 ans chez le cachalot, 80 chez l’orque, 78 ans chez l’homme, 60 chez le dauphin, sous réserve bien sûr des variations favorables ou défavorables de l’environnement.
Pourquoi un gros cerveau ?
"Nous devons nous souvenir que le monde mental du dauphin est élaboré par l’un des systèmes de traitement de l’information parmi les plus vastes qui ait jamais existé parmi les mammifères" déclare H.Jerison, insistant sur le fait que "développer un gros cerveau est extrêmement coûteux en énergie et en oxygène. Cet investissement a donc une raison d’être en terme d’évolution darwinienne. Nous devons dès lors considérer la manière dont ces masses importantes de tissu cérébral ont été investies dans le contrôle du comportement et de l’expérimentation du monde, ceci en comparaison avec l’usage qu’en font les petites masses cérébrales".
Un cerveau est par essence un organe chargé de traiter l’information en provenance du monde extérieur.
Les grands cerveaux exécutent cette tâche en tant qu’ensemble élaborés de systèmes de traitement, alors que le cerveau de la grenouille ou de l’insecte, par exemple, se contente de modules moins nombreux, dont la finesse d’analyse est comparativement plus simple.
Cela ne nous empêche pas cependant de retrouver des structures neuronales étonnamment semblables d’un animal à l’autre : lorsqu’un promeneur tombe nez à nez avec un crotale, c’est le même plancher sub-thalamique dévolue à la peur qui s’allume chez l’une et l’autre des ces créatures. Quant un chien ou un humain se voient soulagés de leurs angoisses par le même produit tranquillisant, ce sont évidemment les mêmes neuromédiateurs qui agissent sur les mêmes récepteurs neuronaux qui sont la cause du phénomène.
A un très haut niveau de cette hiérarchie, le traitement en question prend la forme d’une représentation ou d’un modèle du monde (Craik, 1943, 1967, Jerison, 1973) et l’activité neuronale se concentre en "paquets d’informations" (chunks) à propos du temps et de l’espace et à propos d’objets, en ce compris les autres individus et soi-même.
" Puisque le modèle du monde qui est construit de la sorte" insiste H.Jerison, "se trouve fondé sur des variables physiquement définies issues directement du monde externe et puisque ces informations sont traitées par des cellules nerveuses et des réseaux neuronaux structurellement semblables chez tous les mammifères supérieurs, les modèles du monde construits par différents individus d’une même espèce ou même chez des individus d’espèces différentes, ont de bonnes chances d’être également similaires".
Et à tout le moins compréhensibles l’un pour l’autre.

Auteur: Internet

Info: http://www.dauphinlibre.be/dauphins-cerveau-intelligence-et-conscience-exotiques

[ comparaisons ]

 

Commentaires: 0

évolution technologique

Intelligence artificielle ou stupidité réelle ?

Bien que le battage médiatique augmente la sensibilisation à l'IA, il facilite également certaines activités assez stupides et peut distraire les gens de la plupart des progrès réels qui sont réalisés.
Distinguer la réalité des manchettes plus dramatiques promet d'offrir des avantages importants aux investisseurs, aux entrepreneurs et aux consommateurs.

L'intelligence artificielle a acquis sa notoriété récente en grande partie grâce à des succès très médiatisés tels que la victoire d'IBM Watson à Jeopardy et celle de Google AlphaGo qui a battu le champion du monde au jeu "Go". Waymo, Tesla et d'autres ont également fait de grands progrès avec les véhicules auto-propulsés. Richard Waters a rendu compte de l'étendue des applications de l'IA dans le Financial Times : "S'il y a un message unificateur qui sous-tend la technologie grand public exposée [au Consumer Electronics Show] .... c'est : "L'IA partout."

Les succès retentissants de l'IA ont également capturé l'imagination des gens à un tel point que cela a suscité d'autres efforts d'envergure. Un exemple instructif a été documenté par Thomas H. Davenport et Rajeev Ronanki dans le Harvard Business Review. Ils écrirent, "En 2013, le MD Anderson Cancer Center a lancé un projet ""Moon shot " : diagnostiquer et recommander des plans de traitement pour certaines formes de cancer en utilisant le système cognitif Watson d'IBM". Malheureusement, ce système n'a pas fonctionné et en 2017 le projet fut mis en veilleuse après avoir coûté plus de 62 millions de dollars sans avoir été utilisé pour les patients.

Waters a également abordé un autre message, celui des attentes modérées. En ce qui concerne les "assistants personnels à commande vocale", note-t-elle, "on ne sait pas encore si la technologie est capable de remplacer le smartphone pour naviguer dans le monde numérique autrement autrement que pour écouter de la musique ou vérifier les nouvelles et la météo".

D'autres exemples de prévisions modérées abondent. Generva Allen du Baylor College of Medicine et de l'Université Rice a avertit , "Je ne ferais pas confiance à une très grande partie des découvertes actuellement faites qui utilisent des techniques de machine learning appliquées à de grands ensembles de données". Le problème, c'est que bon nombre des techniques sont conçues pour fournir des réponses précises et que la recherche comporte des incertitudes. Elle a précisé : "Parfois, il serait beaucoup plus utile qu'ils reconnaissent que certains sont vraiment consolidés, mais qu'on est pas sûr pour beaucoup d'autres".

Pire encore, dans les cas extrêmes, l'IA n'est pas seulement sous-performante ; elle n'a même pas encore été mise en œuvre. Le FT rapporte, "Quatre jeunes entreprises européennes sur dix n'utilisent aucun programme d'intelligence artificielle dans leurs produits, selon un rapport qui souligne le battage publicitaire autour de cette technologie.

Les cycles d'attentes excessives suivies de vagues de déception ne sont pas surprenants pour ceux qui ont côtoyé l'intelligence artificielle pendant un certain temps. Ils savent que ce n'est pas le premier rodéo de l'IA. En effet, une grande partie du travail conceptuel date des années 1950. D'ailleurs, en passant en revue certaines de mes notes récentes je suis tombé sur une pièce qui explorait les réseaux neuronaux dans le but de choisir des actions - datant de 1993.

La meilleure façon d'avoir une perspective sur l'IA est d'aller directement à la source et Martin Ford nous en donne l'occasion dans son livre, Architects of Intelligence. Organisé sous la forme d'une succession d'entrevues avec des chercheurs, des universitaires et des entrepreneurs de premier plan de l'industrie, le livre présente un historique utile de l'IA et met en lumière les principaux courants de pensée.

Deux perspectives importantes se dégagent de ce livre.

La première est qu'en dépit des origines et des personnalités disparates des personnes interrogées, il existe un large consensus sur des sujets importants.

L'autre est qu'un grand nombre des priorités et des préoccupations des principales recherches sur l'IA sont bien différentes de celles exprimées dans les médias grand public.

Prenons par exemple le concept d'intelligence générale artificielle (AGI). Qui est étroitement lié à la notion de "singularité" ce point où l'IA rejoindra celle de l'homme - avant un dépassement massif de cette dernière. Cette idée et d'autres ont suscité des préoccupations au sujet de l'IA, tout comme les pertes massives d'emplois, les drones tueurs et une foule d'autres manifestations alarmantes.

Les principaux chercheurs en AI ont des points de vue très différents ; ils ne sont pas du tout perturbés par l'AGI et autres alarmismes.

Geoffrey Hinton, professeur d'informatique à l'Université de Toronto et vice-président et chercheur chez Google, dit : "Si votre question est : Quand allons-nous obtenir un commandant-docteur Data (comme dans Star Trek ) je ne crois pas que ce sera comme çà que ça va se faire. Je ne pense pas qu'on aura des programmes uniques et généralistes comme ça."

Yoshua Bengio, professeur d'informatique et de recherche opérationnelle à l'Université de Montréal, nous dit qu'il y a des problèmes très difficiles et que nous sommes très loin de l'IA au niveau humain. Il ajoute : "Nous sommes tous excités parce que nous avons fait beaucoup de progrès dans cette ascension, mais en nous approchant du sommet, nous apercevons d'autres collines qui s'élèvent devant nous au fur et à mesure".

Barbara Grosz, professeur de sciences naturelles à l'Université de Harvard : "Je ne pense pas que l'AGI soit la bonne direction à prendre". Elle soutient que la poursuite de l'AGI (et la gestion de ses conséquences) sont si loin dans l'avenir qu'elles ne sont que "distraction".

Un autre fil conducteur des recherches sur l'IA est la croyance que l'IA devrait être utilisée pour améliorer le travail humain plutôt que le remplacer.

Cynthia Breazeal, directrice du groupe de robots personnels du laboratoire de médias du MIT, aborde la question : "La question est de savoir quelle est la synergie, quelle est la complémentarité, quelle est l'amélioration qui permet d'étendre nos capacités humaines en termes d'objectifs, ce qui nous permet d'avoir vraiment un plus grand impact dans le monde, avec l'IA."

Fei-Fei Li, professeur d'informatique à Stanford et scientifique en chef pour Google Cloud dit lui : "L'IA en tant que technologie a énormément de potentiel pour valoriser et améliorer le travail, sans le remplacer".

James Manyika, président du conseil et directeur du McKinsey Global Institute, fait remarquer que puisque 60 % des professions ont environ un tiers de leurs activités qui sont automatisables et que seulement environ 10 % des professions ont plus de 90 % automatisables, "beaucoup plus de professions seront complétées ou augmentées par des technologies qu'elles ne seront remplacées".

De plus, l'IA ne peut améliorer le travail humain que si elle peut travailler efficacement de concert avec lui.

Barbara Grosz fait remarquer : "J'ai dit à un moment donné que 'les systèmes d'IA sont meilleurs s'ils sont conçus en pensant aux gens'". Je recommande que nous visions à construire un système qui soit un bon partenaire d'équipe et qui fonctionne si bien avec nous que nous ne nous rendions pas compte qu'il n'est pas humain".

David Ferrucci, fondateur d'Elemental Cognition et directeur d'IA appliquée chez Bridgewater Associates, déclare : " L'avenir que nous envisageons chez Elemental Cognition repose sur une collaboration étroite et fluide entre l'intelligence humaine et la machine. "Nous pensons que c'est un partenariat de pensée." Yoshua Bengio nous rappelle cependant les défis à relever pour former un tel partenariat : "Il ne s'agit pas seulement de la précision [avec l'IA], il s'agit de comprendre le contexte humain, et les ordinateurs n'ont absolument aucun indice à ce sujet."

Il est intéressant de constater qu'il y a beaucoup de consensus sur des idées clés telles que l'AGI n'est pas un objectif particulièrement utile en ce moment, l'IA devrait être utilisée pour améliorer et non remplacer le travail et l'IA devrait fonctionner en collaboration avec des personnes. Il est également intéressant de constater que ces mêmes leçons sont confirmées par l'expérience des entreprises.

Richard Waters décrit comment les implémentations de l'intelligence artificielle en sont encore à un stade assez rudimentaire.

Éliminez les recherches qui monopolisent les gros titres (un ordinateur qui peut battre les humains au Go !) et la technologie demeure à un stade très primaire .

Mais au-delà de cette "consumérisation" de l'IT, qui a mis davantage d'outils faciles à utiliser entre les mains, la refonte des systèmes et processus internes dans une entreprise demande beaucoup de travail.

Ce gros travail prend du temps et peu d'entreprises semblent présentes sur le terrain. Ginni Rometty, responsable d'IBM, qualifie les applications de ses clients d'"actes aléatoires du numérique" et qualifie nombre de projets de "hit and miss". (ratages). Andrew Moore, responsable de l'intelligence artificielle pour les activités de Google Cloud business, la décrit comme "intelligence artificielle artisanale". Rometty explique : "Ils ont tendance à partir d'un ensemble de données isolé ou d'un cas d'utilisation - comme la rationalisation des interactions avec un groupe particulier de clients. Tout ceci n'est pas lié aux systèmes, données ou flux de travail plus profonds d'une entreprise, ce qui limite leur impact."

Bien que le cas HBR du MD Anderson Cancer Center soit un bon exemple d'un projet d'IA "au clair de lune "qui a probablement dépassé les bornes, cela fournit également une excellente indication des types de travail que l'IA peut améliorer de façon significative. En même temps que le centre essayait d'appliquer l'IA au traitement du cancer, son "groupe informatique expérimentait l'utilisation des technologies cognitives pour des tâches beaucoup moins ambitieuses, telles que faire des recommandations d'hôtels et de restaurants pour les familles des patients, déterminer quels patients avaient besoin d'aide pour payer leurs factures, et résoudre les problèmes informatiques du personnel".

Dans cette entreprise, le centre a eu de bien meilleures expériences : "Les nouveaux systèmes ont contribué à accroître la satisfaction des patients, à améliorer le rendement financier et à réduire le temps consacré à la saisie fastidieuse des données par les gestionnaires de soins de l'hôpital. De telles fonctions banales ne sont peut-être pas exactement du ressort de Terminator, mais elles sont quand même importantes.

Optimiser l'IA dans le but d'augmenter le travail en collaborant avec les humains était également le point central d'une pièce de H. James Wilson et Paul R. Daugherty "HBRpiece". Ils soulignent : "Certes, de nombreuses entreprises ont utilisé l'intelligence artificielle pour automatiser leurs processus, mais celles qui l'utilisent principalement pour déplacer leurs employés ne verront que des gains de productivité à court terme. Grâce à cette intelligence collaborative, l'homme et l'IA renforcent activement les forces complémentaires de l'autre : le leadership, le travail d'équipe, la créativité et les compétences sociales de la première, la rapidité, l'évolutivité et les capacités quantitatives de la seconde".

Wilson et Daugherty précisent : "Pour tirer pleinement parti de cette collaboration, les entreprises doivent comprendre comment les humains peuvent le plus efficacement augmenter les machines, comment les machines peuvent améliorer ce que les humains font le mieux, et comment redéfinir les processus commerciaux pour soutenir le partenariat". Cela demande beaucoup de travail et cela va bien au-delà du simple fait de balancer un système d'IA dans un environnement de travail préexistant.

Les idées des principaux chercheurs en intelligence artificielle, combinées aux réalités des applications du monde réel, offrent des implications utiles. La première est que l'IA est une arme à double tranchant : le battage médiatique peut causer des distractions et une mauvaise attribution, mais les capacités sont trop importantes pour les ignorer.

Ben Hunt discute des rôles de la propriété intellectuelle (PI) et de l'intelligence artificielle dans le secteur des investissements, et ses commentaires sont largement pertinents pour d'autres secteurs. Il note : "L'utilité de la propriété intellectuelle pour préserver le pouvoir de fixation des prix est beaucoup moins fonction de la meilleure stratégie que la PI vous aide à établir, et beaucoup plus fonction de la façon dont la propriété intellectuelle s'intègre dans le l'esprit du temps (Zeitgeist) dominant dans votre secteur.

Il poursuit en expliquant que le "POURQUOI" de votre PI doit "répondre aux attentes de vos clients quant au fonctionnement de la PI" afin de protéger votre produit. Si vous ne correspondez pas à l'esprit du temps, personne ne croira que les murs de votre château existent, même si c'est le cas". Dans le domaine de l'investissement (et bien d'autres encore), "PERSONNE ne considère plus le cerveau humain comme une propriété intellectuelle défendable. Personne." En d'autres termes, si vous n'utilisez pas l'IA, vous n'obtiendrez pas de pouvoir de fixation des prix, quels que soient les résultats réels.

Cela fait allusion à un problème encore plus grave avec l'IA : trop de gens ne sont tout simplement pas prêts à y faire face.

Daniela Rus, directrice du laboratoire d'informatique et d'intelligence artificielle (CSAIL) du MIT déclare : "Je veux être une optimiste technologique. Je tiens à dire que je vois la technologie comme quelque chose qui a le potentiel énorme d'unir les gens plutôt que les diviser, et de les autonomiser plutôt que de les désolidariser. Mais pour y parvenir, nous devons faire progresser la science et l'ingénierie afin de rendre la technologie plus performante et plus utilisable." Nous devons revoir notre façon d'éduquer les gens afin de nous assurer que tous ont les outils et les compétences nécessaires pour tirer parti de la technologie.

Yann Lecun ajoute : "Nous n'aurons pas de large diffusion de la technologie de l'IA à moins qu'une proportion importante de la population ne soit formée pour en tirer parti ".

Cynthia Breazeal répéte : "Dans une société de plus en plus alimentée par l'IA, nous avons besoin d'une société alphabétisée à l'IA."

Ce ne sont pas non plus des déclarations creuses ; il existe une vaste gamme de matériel d'apprentissage gratuit pour l'IA disponible en ligne pour encourager la participation sur le terrain.

Si la société ne rattrape pas la réalité de l'IA, il y aura des conséquences.

Brezeal note : "Les craintes des gens à propos de l'IA peuvent être manipulées parce qu'ils ne la comprennent pas."

Lecun souligne : " Il y a une concentration du pouvoir. À l'heure actuelle, la recherche sur l'IA est très publique et ouverte, mais à l'heure actuelle, elle est largement déployée par un nombre relativement restreint d'entreprises. Il faudra un certain temps avant que ce ne soit utilisé par une plus grande partie de l'économie et c'est une redistribution des cartes du pouvoir."

Hinton souligne une autre conséquence : "Le problème se situe au niveau des systèmes sociaux et la question de savoir si nous allons avoir un système social qui partage équitablement... Tout cela n'a rien à voir avec la technologie".

À bien des égards, l'IA est donc un signal d'alarme. En raison de l'interrelation unique de l'IA avec l'humanité, l'IA a tendance à faire ressortir ses meilleurs et ses pires éléments. Certes, des progrès considérables sont réalisés sur le plan technologique, ce qui promet de fournir des outils toujours plus puissants pour résoudre des problèmes difficiles. Cependant, ces promesses sont également limitées par la capacité des gens, et de la société dans son ensemble, d'adopter les outils d'IA et de les déployer de manière efficace.

Des preuves récentes suggèrent que nous avons du pain sur la planche pour nous préparer à une société améliorée par l'IA. Dans un cas rapporté par le FT, UBS a créé des "algorithmes de recommandation" (tels que ceux utilisés par Netflix pour les films) afin de proposer des transactions pour ses clients. Bien que la technologie existe, il est difficile de comprendre en quoi cette application est utile à la société, même de loin.

Dans un autre cas, Richard Waters nous rappelle : "Cela fait presque dix ans, par exemple, que Google a fait trembler le monde de l'automobile avec son premier prototype de voiture autopropulsée". Il continue : "La première vague de la technologie des voitures sans conducteur est presque prête à faire son entrée sur le marché, mais certains constructeurs automobiles et sociétés de technologie ne semblent plus aussi désireux de faire le grand saut. Bref, ils sont menacés parce que la technologie actuelle est à "un niveau d'autonomie qui fait peur aux constructeurs automobiles, mais qui fait aussi peur aux législateurs et aux régulateurs".

En résumé, que vous soyez investisseur, homme d'affaires, employé ou consommateur, l'IA a le potentiel de rendre les choses bien meilleures - et bien pires. Afin de tirer le meilleur parti de cette opportunité, un effort actif axé sur l'éducation est un excellent point de départ. Pour que les promesses d'AI se concrétisent, il faudra aussi déployer beaucoup d'efforts pour mettre en place des infrastructures de systèmes et cartographier les forces complémentaires. En d'autres termes, il est préférable de considérer l'IA comme un long voyage plutôt que comme une destination à court terme.

Auteur: Internet

Info: Zero Hedge, Ven, 03/15/2019 - 21:10

[ prospective ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par miguel