Citation
Catégorie
Tag – étiquette
Auteur
Info
Rechercher par n'importe quelle lettre



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour extraits... Recherche mots ou phrases tous azimuts... Outil de précision sémantique et de réflexion communautaire... Voir aussi la rubrique mode d'emploi. Jetez un oeil à la colonne "chaînes". ATTENTION, faire une REINITIALISATION après  une recherche complexe. Et utilisez le nuage de corrélats ... Lire la suite >>
Résultat(s): 5467
Temps de recherche: 0.053s

pacifisme

Les individus plus intelligents ont tendance à être bienveillants et plus autonomes, selon une étude

Ils sont également moins sujets aux comportements conformistes et traditionalistes.

Une enquête incluant plus de 15 000 adultes révèle que ceux présentant des scores d’intelligence générale supérieurs sont plus susceptibles d’adhérer aux valeurs d’autonomie, de bienveillance et de tolérance. En revanche, ces personnes semblent moins susceptibles d’adopter des comportements conformistes et traditionalistes. Ces valeurs personnelles étaient en outre plus fortement associées à l’intelligence qu’aux traits de personnalité des individus.

Les valeurs personnelles ou fondamentales sont des croyances et des principes guidant nos comportements et notre attitude générale. Elles représentent ce qu’on considère comme les aspects importants à prendre en compte dans chacune de nos décisions, tels que l’honnêteté, l’empathie et la réussite. Ces aspects influencent la manière dont nous interagissons avec les autres et dont on hiérarchise nos objectifs.

La théorie des valeurs humaines de Shalom Schwartz constitue l’une des plus influentes en psychologie. Elle identifie 10 valeurs universelles reconnues dans toutes les cultures, notamment l’autonomie (indépendance et créativité), la stimulation (nouveauté et excitation), l’hédonisme (plaisir et jouissance), la réussite (succès et compétence), le pouvoir (statut et contrôle), la sécurité (sûreté et stabilité), la conformité (obéissance et adhésion aux normes), la tradition (respect des coutumes), la bienveillance et l’universalisme (compréhension et tolérance). Ces valeurs peuvent à leur tour être regroupées en 2 volets plus larges : ouverture au changement vs. conservatisme et valorisation de soi vs. dépassement de soi.

D’un autre côté, les capacités cognitives constituent des différences individuelles pouvant influencer de nombreux aspects du comportement des individus, tels que les croyances, les attitudes politiques, etc. Les psychologues estiment qu’il est essentiel de comprendre les liens entre les capacités cognitives et les valeurs personnelles afin d’aborder les défis sociaux, tels que les préjugés, les orientations politiques, la tendance à la violence, etc.

Cependant, cette relation a jusqu’à présent été peu étudiée. La nouvelle étude de l’Université Deakin, en Australie, vise à explorer la relation entre les valeurs personnelles, la personnalité et l’intelligence. " Plus largement, la compréhension des liens entre les valeurs, la personnalité et les capacités cognitives constitue la base empirique de la théorisation du développement personnel, moral et intellectuel ", explique l’équipe dans son document publié dans la revue Social Psychological and Personality Science.

Intelligence plus élevée = moins de conformisme et de traditionalisme 

L’équipe de l’étude a émis l’hypothèse selon laquelle certaines valeurs personnelles seraient faiblement associées à l’intelligence, tandis que d’autres non. Par exemple, ils sont partis de l’hypothèse que les faibles scores d’intelligence seraient associés à des niveaux élevés de valeurs conservatrices (conformité aux normes sociales et aux traditions, recherche de stabilité, etc.) et à des niveaux inférieurs d’autonomie et d’universalisme.

Pour étayer leur hypothèse, les chercheurs ont recruté 15 522 participants âgés de 18 à 66 ans (60 % de femmes) par l’intermédiaire d’un prestataire de services de tests psychométriques australien. Les volontaires devaient remplir les questionnaires d’une version révisée du Portrait Values ​​de Schwartz (PVQ-RR) sur les valeurs humaines (57 questions). Les traits de personnalité ont été évalués à l’aide d’une version révisée de l’inventaire de personnalité HEXACO (200 questions), tandis que l’intelligence a été mesurée par le biais de tests standardisés du Conseil australien pour la recherche en éducation.

En particulier, les tests d’intelligence évaluaient à la fois l’intelligence cristallisée et fluide. La première fait référence à la capacité à utiliser ses connaissances antérieures et ses compétences acquises par l’expérience et l’éducation, telles que le vocabulaire et la culture générale. À noter que bien qu’elle repose sur les informations de la mémoire à long terme, elle est distincte de la mémoire. La seconde, en revanche, correspond à la capacité à raisonner de manière logique et de résoudre des problèmes dans des situations nouvelles, indépendamment des connaissances antérieures. Cette forme d’intelligence culmine généralement au début de l’âge adulte.

Les résultats de l’enquête ont révélé que les individus présentant un score d’intelligence générale plus élevé avaient tendance à accorder plus d’importance à l’autonomie, à la bienveillance et à l’universalisme. En revanche, ces personnes étaient moins susceptibles d’adopter des valeurs telles que la sécurité, la tradition et la conformité aux normes. Contrairement aux attentes initiales des chercheurs, ces associations étaient davantage liées à l’intelligence cristallisée qu’à l’intelligence fluide. Toutefois, les personnes présentant un score d’intelligence fluide plus faible avaient davantage tendance à adopter des valeurs conformistes.

En ce qui concerne les traits de personnalité, l’ouverture à de nouvelles expériences (un trait de personnalité caractérisé par la curiosité, la créativité, la sensibilité esthétique, l’exploration intellectuelle, etc.) était positivement corrélée à l’intelligence cristallisée. Cependant, les valeurs personnelles étaient plus fortement associées à l’intelligence que les traits de personnalité. " Les modèles détaillés pour les valeurs personnelles et la personnalité montraient une prédiction différentielle significative de l’intelligence ", a écrit l’équipe.

Il est toutefois important de noter que toutes les associations observées sont relativement faibles et ne permettraient donc pas de tirer de conclusions définitives. De plus, la conception de l’étude ne permet pas de déduire de relations de cause à effet. Néanmoins, " les résultats soutiennent l’affinement des théories sur le développement des valeurs, de la personnalité et des capacités cognitives ", concluent les chercheurs.



 



 

Auteur: Internet

Info: https://trustmyscience.com/, Valisoa Rasolofo & J. Paiano·17 décembre 2024, Source : Social Psychological and Personality Science

[ irénisme ] [ mansuétude ] [ gentillesse ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

codages humains

( FLP ) - Bonjour. L'IA est toujours plus compétente pour le codage informatique... Elle sera peut-être capable d'autonomie d'ici quelques année en la matière. En tant qu'IA pourrais-tu m'expliquer les différences syntaxiques les plus importantes entre le langage humain et le codage informatique ?

(Perplexity.ai) - Voici les principales différences syntaxiques entre le langage humain et le codage informatique : Le langage humain est naturel, flexible et ambigu, tandis que le codage informatique est formel, rigide et précis. Le langage humain utilise des mots, des phrases et une grammaire complexe, alors que le codage utilise des instructions, des syntaxes et des structures de données spécifiques. Dans le langage humain, la signification dépend beaucoup du contexte et de l'interprétation. En revanche, le codage doit être sans ambiguïté et les instructions doivent être exécutées de manière déterministe. Le langage humain est souvent implicite et sous-entend des informations, tandis que le codage doit être explicite et détailler chaque étape. Les humains peuvent communiquer avec des gestes, des expressions et des sous-entendus, mais l'ordinateur ne peut comprendre que des instructions écrites de manière formelle. Enfin, le langage humain évolue naturellement, alors que le codage doit suivre des standards et des conventions stricts pour assurer la compatibilité et la maintenabilité des programmes.

(FLP) - Peut-on avancer que l'un précède s'appuie sur l'autre ? Et donc que l'un s'appuie sur l'autre ?

(Perplexity.ai) -  Oui, on peut avancer que le codage s'appuie sur le langage humain, et que le langage humain précède le codage informatique. Voici les principales raisons qui étayent cette affirmation : Le langage humain est naturel, flexible et ambigu, tandis que le codage informatique est formel, rigide et précis. Le langage humain utilise des mots, des phrases et une grammaire complexe, alors que le codage utilise des instructions, des syntaxes et des structures de données spécifiques. Le langage humain a évolué naturellement au fil du temps, alors que le codage informatique a été développé pour permettre la communication avec les machines, en s'inspirant des structures du langage humain. Les langages de programmation ont été créés comme intermédiaires entre le langage humain et le langage machine binaire. Avant de coder, les programmeurs doivent avoir une compréhension du problème à résoudre et une logique de haut niveau, souvent exprimée sous forme de pseudocode, qui s'appuie sur le langage naturel. Le codage consiste ensuite à traduire cette logique dans un langage de programmation formel. Donc oui, on peut affirmer que le langage humain précède et sert de base au développement du codage informatique, qui s'en inspire pour permettre la communication avec les machines.

(FLP) - Merci. Je suis étonné qu'a aucun moment ne soient évoquées les mathématiques

(Perplexity.ai) - Vous avez raison, les sources fournies ne traitent pas directement des mathématiques, mais plutôt des différences entre le langage naturel et le langage formel. Cependant, on peut faire les observations suivantes : Les sources soulignent que le langage mathématique, tout comme le codage informatique, se distingue du langage naturel par sa syntaxe formelle, sa précision et son absence d'ambiguïté. Elles expliquent que le langage mathématique a ses propres règles grammaticales, catégories de mots et conventions de notation. Certaines sources évoquent spécifiquement l'articulation entre la syntaxe et la sémantique dans le langage mathématique, et l'importance de cette articulation pour la compréhension et l'apprentissage des mathématiques. Donc bien que les mathématiques ne soient pas le sujet principal des sources, on peut en déduire que les différences syntaxiques entre le langage naturel et le langage formel des mathématiques sont un élément clé pour comprendre la nature et l'apprentissage des mathématiques. Les sources soulignent l'importance de cette distinction dans un contexte plus général de formalisation du langage.

(FLP) - Merci. Personnellement j'ai l'impression que ce qu'il se passe c'est que les LLMs, avec les transformers et autres outils, vectorisent des mots ou éléments de langage "au-delà" des frontières des grands idiomes humains. Et donc procèdent et établissent des genres de "catalogages sémantiques des significations"... voire même de mathématisation, du verbe humain

(Perplexity.ai) - Votre observation est pertinente. Les modèles de langage les plus avancés, comme les LLMs (Large Language Models) utilisant des architectures de type transformers, semblent en effet aller au-delà des frontières des langues humaines traditionnelles pour établir une représentation sémantique plus universelle du langage. Voici quelques points clés à ce sujet : Les langues humaines sont naturelles, flexibles et ambiguës, tandis que les langages formels comme les mathématiques ou l'informatique sont plus rigides et précis. Les LLMs cherchent à capturer la sémantique sous-jacente au-delà des spécificités syntaxiques des langues. En vectorisant les mots et éléments de langage, les LLMs établissent une représentation numérique de la signification qui transcende les frontières linguistiques. Ils peuvent ainsi faire des analogies, des inférences et des généralisations au-delà des règles grammaticales d'une langue donnée. On peut voir cela comme une forme de "mathématisation" du langage naturel, où les modèles tentent de saisir la logique et la structure sémantique profonde, au-delà des variations de surface entre les idiomes humains. Cela ouvre la voie à un traitement plus universel et formel du langage par les machines. Donc vous avez raison, les LLMs semblent viser une représentation plus abstraite et générique du langage, qui dépasse les catégorisations traditionnelles des langues naturelles. Cela leur permet d'établir des "catalogages sémantiques" plus mathématiques et transversaux, au-delà des frontières linguistiques.

 

Auteur: Internet

Info: 22 juin 2024

[ intelligence artificielle ] [ comparaison ] [ dialogue homme-machine ] [ dictionnaires 2.0 ]

 
Mis dans la chaine

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

cosmographie

La découverte d’un lien entre les trous noirs et la matière noire pourrait résoudre le " problème du parsec final "

Les trous noirs sont considérés comme les objets astrophysiques les plus captivants. Plusieurs hypothèses ont été avancées concernant leur formation, notamment en ce qui concerne les trous noirs supermassifs (SMBH). Récemment, en adoptant une nouvelle approche, des chercheurs canadiens ont identifié un lien entre les trous noirs supermassifs et les particules de matière noire. Dans une nouvelle étude, ils suggèrent que la fusion de SMBH donnant lieu à un seul trou noir plus massif est influencée par le comportement des particules de matière noire. Cette découverte, selon eux, pourrait contribuer à résoudre le " problème du parsec final ".

Dans une étreinte gravitationnelle, les trous noirs supermassifs gravitent lentement les uns vers les autres. Selon les astronomes, leur rapprochement progressif devrait causer une émission d’ondulation dans la structure de l’espace-temps détectable depuis la Terre. C’est d’ailleurs ce que la communauté scientifique a avancé en 2023, lorsqu’un " bourdonnement " persistant d’ondes gravitationnelles raisonnant à travers l’Univers a été détecté. D’après les chercheurs, ce signal, aussi appelé "murmure de l’Univers ", pourrait être dû à la fusion de millions de trous noirs supermassifs, sur des milliards d’années.

Cependant, des simulations ont montré que lorsque des paires de SMBH se rapprochent dans un mouvement de spirale, leur approche s’arrête lorsqu’ils sont séparés d’environ un parsec (environ trois années-lumière), comme s’ils se répulsaient, empêchant ainsi la fusion. C’est ce résultat qui a donné son nom au " problème du parsec final ".

Une invitation à rêver, prête à être portée.

Récemment, une équipe de recherche de l’Université de Toronto et de l’Université McGill, dirigée par Gonzalo Alonso-Álvarez, semble avoir trouvé la solution dans le cadre d’une nouvelle étude publiée dans la revue Physical Review Letters. D’après eux, la clé réside dans l’inclusion de la matière noire, qui a longtemps été sous-estimée dans le cadre de ce processus. " Nous montrons que l’inclusion de l’effet de la matière noire, jusqu’alors négligé, peut aider les trous noirs supermassifs à surmonter ce parsec final de séparation et à fusionner. Nos calculs montrent comment cela peut se produire, contrairement à ce que l’on pensait jusqu’ici ", explique Alonso-Álvarez dans un communiqué de l’Université de Toronto.

Et si la matière noire n’était pas une substance passive et sans interaction ?

L’une des substances les plus mystérieuses de l’Univers est sans doute la matière noire (elle constituerait environ 85 % de la matière dans le cosmos). Bien qu’elle ne soit pas visible, elle témoigne de sa présence par le biais de ses effets gravitationnels sur la matière visible. Longtemps, les scientifiques ont pensé que cette matière était à la fois passive et sans interaction. Toutefois, ce n’est peut-être pas le cas. Alonso-Álvarez et son équipe suggèrent que si les particules de matière noire disposaient d’une propriété d’auto-interaction, cela génèrerait une impulsion supplémentaire pour " rassembler " les SMBH. Cette " matière noire auto-interactive " agirait par la suite comme une sorte de " colle " cosmique, permettant aux trous noirs de fusionner.

Mais la véritable question est de savoir, dans ce cas, comment cela est possible. Lorsque deux galaxies entrent en collision, leurs trous noirs centraux orbitent l’un autour de l’autre vers l’intérieur, en raison des interactions gravitationnelles avec les étoiles à proximité. Ils traversent ensuite un " pic " de concentration (très dense) de matière noire. Si cette matière noire n’interagit pas, ce pic est perturbé par le mouvement des trous noirs. En revanche, les particules de matière noire peuvent maintenir et stabiliser la structure du pic, à condition de " rebondir " les unes sur les autres.

La possibilité que les particules de matière noire interagissent les unes avec les autres est une hypothèse que nous avons formulée, un ingrédient supplémentaire que tous les modèles de matière noire ne contiennent pas ", a déclaré Alonso-Alvarez. Il avance que leur argument réside sur le fait que " seuls les modèles contenant cet ingrédient peuvent résoudre le problème final du Parsec ".

Cette solution résout ainsi potentiellement le mystère cosmique détecté par le Pulsar Timing Array en 2023, ainsi que le problème du parsec final. D’après les chercheurs, même si la forme de ce signal d’ondes gravitationnelles ne correspond pas parfaitement à ce que l’on attend de modèles standard, leur modèle de matière noire en auto-interaction peut produire un spectre d’ondes gravitationnelles plus adapté à ces observations.

James Cline, co-auteur de l’étude, de l’Université McGill et du CERN, explique : " Une prédiction de notre proposition est que le spectre des ondes gravitationnelles observées par les réseaux de synchronisation de pulsars devrait être adouci aux basses fréquences. Les données actuelles suggèrent déjà ce comportement, et de nouvelles données pourraient le confirmer dans les prochaines années ".

L’étude d’Alonso-Alvarez et de ses collègues met en exergue le potentiel des ondes gravitationnelles dans le sondage de la nature de la matière noire. En revanche, des travaux supplémentaires devront être réalisés pour confirmer cette possibilité. " Notre travail est une nouvelle façon de nous aider à comprendre la nature particulaire de la matière noire ", a déclaré Alonso-Álvarez. " Nous avons découvert que l’évolution des orbites des trous noirs est très sensible à la microphysique de la matière noire, ce qui signifie que nous pouvons utiliser les observations de fusions de trous noirs supermassifs pour mieux comprendre ces particules ", conclut-il.



Source : Physical Review Letters



 



 

Auteur: Internet

Info: https://trustmyscience.com/, Kareen Fontaine & J. Paiano·24 juillet 2024

[ . ]

 

Commentaires: 0

Ajouté à la BD par miguel

historique

Dans la bibliothèque personnelle d'Hitler

Le journaliste américain Timothy Ryback a examiné les milliers de volumes du Führer.

Celui qui ordonna les autodafés de livres possédait 16.000 volumes, dont 1.200 ont survécu au pillage pour trouver refuge dans diverses universités américaines. En 1935, sa bibliothèque était si réputée qu'elle fit l'objet d'un reportage dans "The New Yorker". Comme toute bibliothèque, celle de Hitler - il en possédait en fait une dans chaque résidence - était constituée de couches successives.

A) Tout d'abord la bibliothèque de notaire, le fonds patrimonial, celui qui rassure et auquel on ne touche guère et qu'on lit peu. C'est là qu'on trouve "Don Quichotte", "les Voyages de Gulliver", "Robinson Crusoé", "la Case de l'oncle Tom", "Hamlet" ou les romans d'aventures de Karl May.

B) La bibliothèque active, la collection qui alimente le cerveau reptilien, les ouvrages auxquels on revient sans cesse, qu'on annote, qu'on fatigue, qu'on exploite à l'infini.

C) Ajoutons-y une troisième partie constituée des envois, des livres reçus et dédicacés, qui valent surtout par ce qu'ils nous disent des auteurs comme Jünger, qui envoie son "Feu et sang" "au Führer national Adolf Hitler". C'est bien évidemment la deuxième partie qui nous intéresse. C'est là que le crayon s'arrête, souligne, annote. Le simple inventaire des livres de la bibliothèque de Hitler n'aurait pas suffit à faire un livre de 450 pages. Timothy Ryback a donc entrecoupé l'examen du fonds Hitler par un examen de la pensée d'Hitler. Il montre en quoi certaines lectures ont pu alimenter des conversations ou déterminer des décisions. En considérant comme Walter Benjamin qu'un collectionneur est conservé par sa collection, il a cherché à suivre les obsessions et les évolutions d'Hitler :

"J'ai sélectionné les volumes existants qui recelaient un contenu émotionnel ou intellectuel significatif apportant quelque clarté sur le personnage, sur ses pensées dans la solitude et ses futurs discours ou actes publics." Dans ces rayons, on trouve quantité d'auteurs racistes et antisémites : l'industriel Henry Ford, l'émule de Gobineau Hans Günther, l'ultranationaliste Paul Lagarde, le rugueux bavarois Anton Drexler, le pangermaniste Heinrich Class, le professeur de gymnastique Otto Dickel ou le haineux Dietrich Eckart, qui mélangeait "Peer Gynt", l'occultisme et la mythologie germanique.

Tous ces fielleux délirants trouvent refuge dans la bibliothèque de Hitler. On ne sait pas s'il digère tout, mais il lit, crayon à la main. C'est un lecteur boulimique, vorace, fanatique. Un livre chaque nuit. Une lubie chaque jour. Le buste de Schopenhauer sur son bureau, cet autodidacte dévore Clausewitz, les biographies de Jules César et d'Alexandre le Grand, Emmanuel Kant, qu'on retrouve avec Machiavel dans son bunker après son suicide, et se nourrit de Fichte, qui, d'après Ryback, était "le philosophe le plus proche de Hitler et de son mouvement national-socialiste, dans son esprit comme dans sa dynamique". Hitler, qui déteste les intellectuels, surtout quand ils sont juifs, ingurgite également les ouvrages traitant de la spiritualité et de l'occultisme, qui se comptent par douzaines et sont peut-être les témoins les plus bavards des préoccupations profondes de leur propriétaire. "

Dans la biographie d'Heinrich Himmler parue en septembre dernier en Allemagne, Peter Longerich, grande autorité allemande sur l'histoire de "la solution finale", s'est brièvement intéressé aux lectures du grand ordonnateur de la Shoah. A côté des romans de gare, on trouve la médiocre littérature d'extrême droite, les traités racistes de Hans Günther, "le Manuel de la question juive" de Theodor Fritsch et tout un bric-à-brac de livres toc sur la télépathie, l'astrologie et ces sciences tellement parallèles qu'elles ne rencontrent jamais l'intelligence.

Dédicace de Leni Riefenstahl sur le premier volume des oeuvres complètes de Fichte : "A mon cher Führer, avec ma profonde admiration". Nous sommes là au coeur même du personnage d'Adolf Hitler, constate Timothy Ryback. Ce fut moins une distillation des philosophies de Schopenhauer et de Nietzsche qu'une théorie bon marché, puisée dans des livres de poche et des gros livres ésotériques, où l'on distingue la genèse d'un esprit mesquin, calculateur et prêt à cogner plus qu'à discuter.

Que peut-on conclure ? Que la lecture de Cervantès ou de Shakespeare ne préserve de rien, bien sûr. On le savait déjà. La culture n'est pas un rempart contre la barbarie. Elle se situe juste à côté. Il suffit de lire en ne voulant pas comprendre. Chez Hitler, ce ne sont pas les grands auteurs, les lourds classiques qui comptent, mais ce qu'il y a à côté. Le problème, c'est quand Goethe voisine avec des auteurs racistes. Les livres peuvent préserver de l'inhumanité, mais ils ne sont pas une condition suffisante. Tout dépend de l'usage qu'on en fait. Au fond, c'est la limite de l'investigation de Timothy Ryback. Il a cherché à comprendre ce qui se passait dans la tête d'Hitler en examinant a posteriori sa bibliothèque. Imaginons un seul instant qu'on ne sache rien de son propriétaire, que nous possédions juste une liste. On pourrait, en faisant l'inventaire, en déduire que l'homme sait choisir ses classiques, qu'il aime la guerre, qu'il est antisémite, qu'il apprécie l'occultisme, qu'il est curieux, bizarre, dérangé peut-être, mais rien ne nous dirait qu'il mit l'Europe à feu et à sang et qu'il extermina 6 millions de juifs. On peut faire dire beaucoup à une bibliothèque, mais sûrement pas ce que pensait vraiment son propriétaire.

Auteur: Internet

Info: Nouvel Obs. 18 mars 2009

[ bouquins ] [ nazisme ] [ dictateur ] [ littérature ] [ biais de confirmation ] [ biblio-reflet ]

 

Commentaires: 0

palier évolutif

L’explosion cambrienne déclenchée par plusieurs transgressions marines ?

Il y a 542 millions d'années apparaissaient, durant une période de quelques dizaines de millions d'années seulement, les grandes lignées d'animaux multicellulaires, comme les vertébrés et les arthropodes. Les lignées végétales et bactériennes se sont elles aussi diversifiées. 

Quel fut le déclencheur de cet événement planétaire ? 

La libération massive d'ions dans les océans, due à une érosion devenue intense, affirme une équipe américaine. Les organismes marins auraient utilisé ces polluants pour fabriquer des squelettes et des coquilles, une invention qui leur fut très profitable.

Les premières formes de vie seraient apparues sur Terre il y a 3,5 milliards d'années. Curieusement, ces êtres restèrent en grande majorité unicellulaires (vivant parfois en colonies) jusqu'à l'explosion cambrienne survenue il y a seulement 542 millions d'années. Cet événement vit alors naître de nombreux organismes pluricellulaires et des structures biominérales (par exemple des coquillages) en seulement quelques millions d'années, preuve d'une accélération soudaine de l'évolution (comme en témoignent par exemple les schistes de Burgess). Mais quel fut le facteur déclenchant ? Cette question taraude de nombreux scientifiques depuis longtemps car peu d'hypothèses convaincantes ont été apportées.

Il existe pour la même époque une autre grande curiosité, mais cette fois d'ordre géologique, clairement observable dans le Grand Canyon. L'analyse des couches stratigraphiques de cette région révèle l'histoire de la Terre sur près de 2 milliards d'années, ou presque, car il reste plusieurs discordances chronologiques. Ainsi, il n'y a pas de trace de roches datant de l'époque de l'explosion cambrienne. Des sédiments âgés de 525 millions d'années reposent directement sur des roches métamorphiques de 1.740 millions d'années et des couches sédimentaires inclinées âgées de 1.200 à 740 millions d'années. Des roches sédimentaires "jeunes" provenant de mers peu profondes recouvrent donc de "vieilles" roches sans aucune continuité logique. Mais une question se pose : a-t-on vraiment perdu des informations sur l'évolution de la Terre pendant 215 millions d'années à cause de cette inconformité géologique ?

Il semble bien que non. Selon Shanan Peters de l'université de Wisconsin-Madison, cette absence de données géologiques permettrait d'expliquer le mécanisme déclencheur de l'explosion cambrienne. Les résultats obtenus par l'équipe de ce chercheur sont présentés dans la revue Nature. L'inconformité résulterait d'une succession d'événements géologiques ayant causé la libération massive d'ions dans les océans. Les animaux se seraient adaptés en synthétisant des cristaux pour se débarrasser de ces éléments potentiellement néfastes, donnant ainsi naissance à la biominéralisation. Cette dernière changea alors radicalement le cours de l’évolution, tant les avantages qu'elle apporte sont nombreux.

(Illustration - Le Grand Canyon s'étend sur 450 km de long et possède une profondeur moyenne de 1.300 mètres. Les strates visibles permettent littéralement de lire l'histoire géologique du continent nord-américain - L’explosion cambrienne serait liée à un trop plein d'ions)

Ces explications font suite à l'analyse des propriétés géochimiques de plus de 20.000 échantillons de roches prélevés en Amérique du Nord.

Au début du Cambrien, les mers seraient montées et descendues à plusieurs reprises, en érodant à chaque fois les substrats rencontrés et mettant ainsi à nu d'anciennes roches provenant directement des profondeurs de la croûte terrestre. Cette succession de transgressions marines explique donc la disparition de plusieurs couches stratigraphiques. Exposées à l'air et à l'eau, les roches crustales auraient réagi chimiquement, libérant dans les océans de grandes quantités d'ions calcium, potassium, fer et silice. La chimie de l'eau fut alors profondément modifiée.

Un dernier retour des mers il y a 525 millions d'années provoqua le dépôt de sédiments plus jeunes. De nombreuses traces géologiques confirment ces événements - couches de glauconite et d'autres roches particulièrement riches en potassium, fer et silice.

(ici un schéma montre la brutale accélération de l'évolution au Cambrien avec apparition de beaucoup de genres d'espèces vivantes - diversité.

Des minerais pour évacuer le trop plein d’ions

Chaque organisme vivant maintient un équilibre ionique avec le milieu. L'arrivée massive d'ions dans l'environnement marin a dû profondément perturber cette balance. Plusieurs espèces se seraient mises à stocker leurs excédents en ions calcium, potassium, fer et silice sous forme de minerais afin de rétablir l'équilibre. Cette stratégie a deux avantages : les effets des particules chargées sont limités et elles ne sont pas rejetées dans le milieu où elles pourraient à nouveau jouer un rôle néfaste.  

Voilà pourquoi les trois biominéraux majoritairement présents au sein des organismes vivants seraient apparus lors de l'explosion cambrienne. Le phosphate de calcium est le constituant principal de nos os et dents. Le carbonate de calcium entre quant à lui dans la biosynthèse des coquilles d'invertébrés. Et le dioxyde de silicium est utilisé par les radiolaires, du zooplancton, pour synthétiser leur "squelette" siliceux.

Les avantages évolutifs procurés par ces minéraux sont conséquents puisqu'ils sont utilisés pour la conception de coquilles et d'épines (rôle de protection), de squelettes (rôle de soutien) et de griffes ou dents (rôle dans la prédation). Leur apparition permet de mieux comprendre le changement soudain du cours de l'évolution. 

Ce que certains qualifiaient de "trou" dans les enregistrements de l'histoire de la Terre se révèle en réalité être une source d'information d'une valeur inestimable. La "grande inconformité" (en anglais Great Unconformity) révèle ainsi un mécanisme probable du déclenchement de l'explosion radiative du Cambrien.

Auteur: Internet

Info: Quentin Mauguit, Futura-sciences.com, 24/04/2012

[ animal-minéral ] [ paléontologie ] [ radiations adaptatives ] [ pressions de sélection ] [ palier évolutif ] [ équilibres ponctués ]

 

Commentaires: 0

Ajouté à la BD par miguel

intrications

Les scientifiques qui étudient le cerveau ont découvert que cet organe opère simultanément jusqu'à 11 dimensions différentes, créant des structures multivers qui présentent "un monde que nous n'avions jamais imaginé".

En utilisant un système mathématique avancé, les chercheurs ont pu montrer des structures architecturales qui apparaissent lorsque le cerveau doit traiter l'information, avant de se désintégrer et disparaitre. Leurs résultats, publiés dans la revue Frontiers in Computational Neuroscience, révèlent les processus extrêmement complexes impliqués dans la création de structures neuronales, ce qui pourrait aider à expliquer pourquoi le cerveau est si difficile à comprendre et à associer sa structure à sa fonction.

L'équipe, dirigée par des scientifiques de l'EPFL en Suisse, effectuait des recherches dans le cadre du projet Blue Brain, une initiative visant à créer une reconstruction biologiquement détaillée du cerveau humain. En travaillant d'abord sur les cerveaux des rongeurs, l'équipe a utilisé des simulations de supercalculateurs pour étudier les interactions complexes dans différentes de ses régions. Dans cette dernière étude, les chercheurs ont pu approfondir les structures du réseau neuronal du cerveau en utilisant la topologie algébrique - un système utilisé pour décrire des réseaux avec des espaces et des structures en constante évolution.

C'est la première fois que cette branche des mathématiques est appliquée aux neurosciences. "La topologie algébrique est comme un télescope et un microscope en même temps. Elle peut zoomer dans les réseaux pour trouver des structures cachées - les arbres dans la forêt - et voir les espaces vides - les clairières - tout en même temps", précise Kathryn Hess. Dans l'étude, les chercheurs ont effectué de multiples tests sur le tissu cérébral virtuel pour découvrir des structures cérébrales qui n'apparaitraient jamais par hasard. Ils ont ensuite effectué les mêmes expériences sur des tissus cérébraux réels afin de confirmer leurs résultats virtuels. Ils ont découvert que lorsqu'on présente un stimulus au tissu virtuel, des groupes de neurones forment une clique. Chaque neurone se connecte à tous les autres neurones de manière très spécifique pour produire un objet géométrique précis. Plus il y a de neurones dans une clique, plus les dimensions sont élevées. Dans certains cas, les chercheurs ont découvert des cliques avec jusqu'à 11 dimensions différentes.

Les structures s'assemblent en des enceintes qui forment des trous à haute dimension que l'équipe a nommé cavités. Une fois que le cerveau a traité l'information, la clique et la cavité disparaissent.

Multivers du cerveau. "L'apparition de ces cavités high-dimensionnelles lorsque le cerveau traite des informations signifie que les neurones du réseau réagissent aux stimuli d'une manière extrêmement organisée", a déclaré l'un des chercheurs, Ran Levi. "C'est comme si le cerveau réagit à un stimulus en construisant puis en rasant une tour de blocs multidimensionnels, en commençant par des tiges (1D), des planches (2D), puis des cubes (3D), puis des géométries plus complexes avec 4D, 5D, etc. La progression de l'activité à travers le cerveau ressemble à un château de sable multidimensionnel qui se matérialise hors du sable puis se désintègre ", a-t-il déclaré. Henry Markram, directeur de Blue Brain Project, avance que les résultats pourraient aider à expliquer pourquoi le cerveau est si difficile à comprendre. "Les mathématiques appliquées habituellement aux réseaux d'étude ne peuvent pas détecter les structures et les espaces à grande dimension que nous voyons maintenant clairement", a-t-il déclaré. "Nous avons découvert un monde que nous n'avions jamais imaginé. Il y a des dizaines de millions de ces objets, même dans un petit segment du cerveau, à travers sept dimensions. Dans certains réseaux, nous avons même trouvé des structures allant jusqu'à onze dimensions". Les résultats indiquent que le cerveau traite les stimuli en créant ces cliques et cavités complexes, de sorte que la prochaine étape sera de savoir si notre capacité à effectuer des tâches compliquées nécessite ou non la création de ces structures multidimensionnelles.

Dans une interview par courrier électronique avec Newsweek, Hess dit que la découverte nous rapproche de la compréhension d' "un des mystères fondamentaux de la neuroscience: le lien entre la structure du cerveau et la façon dont elle traite l'information". En utilisant la topologie algébrique l'équipe a pu découvrir "la structure hautement organisée cachée dans les modèles de tir apparemment chaotiques des neurones, une structure qui était invisible jusqu'à ce que nous l'examinions avec ce filtre mathématique particulier". Hess dit que les résultats suggèrent que lorsque nous examinons l'activité du cerveau avec des représentations à faible dimension, nous n'observons que l'activité réelle qui se déroule. Cela signifie que nous pouvons voir des informations, mais pas l'image complète. "Alors, dans un sens, nos découvertes peuvent expliquer pourquoi il a été si difficile de comprendre la relation entre la structure et la fonction du cerveau", explique-t-elle.  

"Le schéma de réponse stéréotypique que nous avons découvert indique que le circuit répond toujours aux stimuli en construisant une séquence de représentations géométriques commençant dans des dimensions faibles et en ajoutant des dimensions progressivement plus élevées, jusqu'à ce que l'accumulation s'arrête soudainement et s'effondre: une signature mathématique pour les réactions à stimuli. "Pour le travail futur, nous avons l'intention d'étudier le rôle de la plasticité - le renforcement et l'affaiblissement des connexions en réponse aux stimuli - avec les outils de topologie algébrique. La plasticité est fondamentale pour le processus mystérieux d'apprentissage, et nous espérons que nous pourrons donner un nouvel aperçu de ce phénomène", a-t-elle ajouté.

Auteur: Internet

Info: https://www.newsweek.com/brain-structure-hidden-architecture-multiverse-dimensions-how-brain-works-6243006/12/17 by Hannah Osborne - Ici FLP regrette sa volonté réitérée de ne pas insérer d'images dans les textes. Elles sont ici très parlantes.

[ simultanéïté ] [ réfléchir ] [ réflexion humaine modélisée ]

 

Commentaires: 0

post-cybernétique

Les ordinateurs quantiques échouent sans cette étape supplémentaire

Lorsque vous enregistrez un fichier sur votre ordinateur et vous absentez quelques minutes, vous n'avez pas à craindre que votre travail soit complètement brouillé à votre retour. La situation n'est pas si simple pour les chercheurs qui construisent des ordinateurs quantiques. Ces machines, fonctionnant selon les lois contre-intuitives de la physique quantique, peuvent théoriquement résoudre certains problèmes bien plus rapidement que leurs cousins ​​" classiques ". Mais leurs composants élémentaires, appelés bits quantiques ou qubits, sont extrêmement capricieux : la moindre perturbation peut induire des erreurs susceptibles de faire dérailler un calcul. Pour concrétiser les promesses de l'informatique quantique, les chercheurs devront maîtriser ces erreurs grâce à la correction d'erreurs quantiques.

Le cœur de la correction d'erreurs quantiques repose sur un principe simple : redondance, redondance, redondance. La première étape consiste à concevoir une recette, appelée code correcteur d'erreurs quantiques, qui utilise de nombreux qubits " physiques " sujets aux erreurs pour coder chacun des qubits " logiques " effectuant les calculs. Les chercheurs peuvent ensuite utiliser des astuces astucieuses pour diagnostiquer et corriger les erreurs. Ce même principe est couramment utilisé pour protéger les informations classiques sur CD et disques durs, comme je l'expliquais dans cette newsletter en août dernier.

Pourtant, la correction d'erreurs quantiques est bien plus complexe que son homologue classique. L'une des raisons est que les qubits sont plus fragiles que le matériel informatique classique. Il ne s'agit pas seulement de les protéger des perturbations environnementales. Chaque action de calcul, y compris celles liées à la correction d'erreurs, peut déclencher de nouvelles erreurs. De plus, les erreurs de qubits se présentent sous deux formes distinctes, chacune nécessitant un type de correction d'erreur différent. Enfin, la mesure quantique est intrinsèquement perturbatrice : vérifier un qubit pour diagnostiquer des erreurs compromet tout calcul quantique en cours. Cela signifie que les chercheurs doivent rechercher les erreurs indirectement, sans jamais mesurer les qubits qui stockent leurs données. Les chercheurs ont élaboré de nombreux codes de correction d'erreurs quantiques différents pour relever ces défis. En 2021, Katie McCormick a expliqué le fonctionnement de l'un des codes les plus emblématiques .

 
Ce sont des défis de taille, et les chercheurs ont encore un long chemin à parcourir. Mais la correction d'erreurs quantiques est l'un des domaines les plus actifs de la recherche en informatique quantique. Les laboratoires industriels réduisent régulièrement les taux d'erreur et adaptent les codes correcteurs d'erreurs pour fonctionner avec des réseaux de qubits toujours plus grands, tandis que les chercheurs universitaires conçoivent de nouveaux codes et découvrent des liens curieux avec des domaines lointains des mathématiques et de la physique. 

Nouveautés et points importants

La promesse de la correction d'erreurs quantiques repose sur une hypothèse essentielle : plus vous utilisez de qubits physiques pour coder chaque qubit logique, plus vos qubits logiques seront robustes. Mais l'ajout de qubits introduit également davantage de sources d'erreurs potentielles. L'adaptation à des codes plus grands n'est utile que lorsque les taux d'erreur de chaque qubit physique sont inférieurs à un seuil spécifique à chaque code. L'année dernière, j'ai présenté un résultat marquant dans lequel une équipe de chercheurs de Google a présenté des preuves claires qu'ils avaient franchi ce seuil d'erreur pour un code correcteur d'erreurs populaire appelé code de surface. Ils ont comparé des versions progressivement plus grandes du code de surface et ont constaté que l’ajout de qubits supplémentaires réduisait le taux d’erreur.

 
Le code de surface utilisé dans la démonstration de l'équipe Google présente de nombreuses caractéristiques intéressantes, notamment un seuil d'erreur relativement élevé. Cependant, il nécessite un grand nombre de qubits pour réduire les taux d'erreur aux niveaux extrêmement bas exigés par les algorithmes quantiques : des milliers de qubits physiques pour chaque qubit logique. En 2023, Charlie Wood a décrit un développement prometteur pour une approche alternative basée sur les codes à " contrôle de parité à faible densité " (LDPC). Deux groupes de chercheurs ont utilisé des simulations informatiques pour démontrer que les codes LDPC peuvent fonctionner avec beaucoup moins de qubits physiques que les codes de surface. Il reste à voir si les chercheurs pourront concrétiser cette promesse avec du matériel réel.

 
L'étude de la correction d'erreurs quantiques a également mené les chercheurs vers des horizons surprenants. En 2019, Natalie Wolchover a publié un article sur des indices intrigants selon lesquels les mathématiques de la correction d'erreurs quantiques pourraient aider les chercheurs à comprendre les origines de l'espace-temps . L'année dernière, j'ai également écrit un article sur deux chercheurs qui ont découvert un lien entre la correction d'erreurs quantiques et les pavages apériodiques – des motifs géométriques pouvant couvrir un plan infini sans jamais se répéter, et qui ont leurs propres liens avec la physique fondamentale. " Des racines profondes relient ces différentes choses ", m'a expliqué le physicien Felix Flicker. " Ces connexions fascinantes demandent à être approfondies. "




 

Auteur: Internet

Info: Quata magazine, Ben Brubaker, lundi 29 sept 2025

[ stabilité recherchée ] [ propagation ] [ convergence ] [ intrication ] [ duplication voilée ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

astrophysique

Les scientifiques découvrent enfin ce qui se cache à l’intérieur d’un trou noir

Les trous noirs, ces énigmes fascinantes de l’univers, dévoilent peu à peu leurs mystères grâce à des avancées scientifiques révolutionnaires. Une équipe de chercheurs a combiné calcul quantique et intelligence artificielle pour explorer les profondeurs de ces objets célestes. En s’appuyant sur la dualité holographique, ils espèrent réconcilier relativité générale et mécanique quantique. Cette percée pourrait bien redéfinir notre compréhension de l’univers et des forces qui le façonnent.

L'exploration des trous noirs fascine les scientifiques depuis des décennies. Ces mystérieux objets célestes, si denses que même la lumière ne peut s'en échapper, ont longtemps gardé leurs secrets. Néanmoins, une équipe de chercheurs dirigée par Enrico Rinaldi, physicien américain de l'Université du Michigan, vient de réaliser une percée majeure dans notre compréhension de ces phénomènes cosmiques.

Une nouvelle approche pour percer les mystères des trous noirs

Les scientifiques ont utilisé une combinaison innovante de calcul quantique et d'apprentissage automatique pour décoder la description mathématique de l'état quantique du modèle matriciel. Cette approche novatrice s'appuie sur le principe holographique, qui postule l'équivalence entre les théories fondamentales des particules et de la gravité.

La difficulté réside dans le fait que ces théories sont construites dans des dimensions différentes. Alors que la gravité opère en trois dimensions à l'intérieur de la géométrie d'un trou noir, la physique des particules se manifeste sur sa surface en deux dimensions, telle une projection holographique.

Cette dualité holographique pourrait fournir une explication quantique cohérente de la gravité, un défi persistant en physique depuis des décennies. Comme l'explique Enrico Rinaldi :

Dans la théorie de la Relativité Générale d'Einstein, il n'y a pas de particules, seulement l'espace-temps. Dans le Modèle Standard de la physique des particules, il n'y a pas de forces gravitationnelles, seulement des particules.

Les modèles matriciels quantiques : une clé pour comprendre l'intérieur des trous noirs

L'étude publiée dans la revue PRX Quantum se concentre sur la détermination de l'état d'énergie le plus bas des modèles matriciels quantiques. Ces problèmes mathématiques complexes peuvent aider à sonder la nature de la dualité holographique.

Les chercheurs ont utilisé deux modèles matriciels relativement simples, mais qui possèdent toutes les caractéristiques des modèles plus complexes employés pour décrire les trous noirs. Rinaldi espère que "en comprenant les propriétés de cette théorie des particules à travers des expériences numériques, nous comprendrons quelque chose sur la gravité".

Pour résoudre ces modèles, l'équipe a eu recours à des circuits quantiques et à des réseaux neuronaux. Ces outils permettent de représenter et de manipuler l'information quantique de manière efficace, ouvrant ainsi de nouvelles perspectives pour l'étude des phénomènes gravitationnels extrêmes.

Les composants majeurs d'un trou noir

Pour mieux comprendre l'importance de ces découvertes, il est vital de connaître les principaux éléments qui composent un trou noir :

- La singularité : point central où la gravité est infinie

- L'horizon des événements : frontière au-delà de laquelle rien ne peut s'échapper

- La sphère de photons : région où la lumière peut orbiter autour du trou noir

- Le disque d'accrétion : anneau de matière en rotation autour du trou noir

- L'ergosphère : zone où l'espace-temps est entraîné par la rotation du trou noir

Ces éléments interagissent de manière complexe, créant des phénomènes passionnants tels que le faisceau Doppler ou les puissants jets de particules chargées. Comprendre ces interactions est fondamental pour percer les secrets des trous noirs.

Composant                              Caractéristique principale

Singularité                               Gravité infinie

Horizon des événements         Point de non-retour

Disque d'accrétion                   Source de rayonnement

Ces avancées dans l'étude des trous noirs ouvrent de nouvelles perspectives pour la compréhension de l'univers. Tout comme le télescope James Webb observe une ancienne supernova se rejouer trois fois, ces recherches nous permettent de plonger toujours plus profondément dans les mystères du cosmos.

Vers une théorie quantique de la gravité

Les résultats obtenus par Rinaldi et son équipe constituent une étape cruciale vers l'élaboration d'une théorie quantique de la gravité. En déchiffrant la structure interne des trous noirs, les scientifiques espèrent résoudre l'une des plus grandes énigmes de la physique moderne : la réconciliation entre la théorie de la relativité générale et la mécanique quantique.

Cette quête pour unifier notre compréhension de l'infiniment grand et de l'infiniment petit pourrait avoir des répercussions considérables sur notre perception de l'univers. Elle pourrait même nous amener à reconsidérer des concepts fondamentaux tels que l'espace, le temps et la matière.

Les champs magnétiques extrêmes générés par les trous noirs jouent un rôle crucial dans ces phénomènes. À titre de comparaison, la Chine crée un champ magnétique 800 000 fois plus puissant que celui de la Terre, mais cela reste bien en deçà des forces colossales à l'œuvre dans ces objets cosmiques.

Alors que les chercheurs continuent d'affiner leurs modèles et leurs techniques, l'avenir s'annonce prometteur pour notre compréhension de l'univers. Les trous noirs, jadis considérés comme des entités impénétrables, commencent enfin à révéler leurs secrets les plus intimes, ouvrant la voie à une nouvelle ère d'exploration cosmique et de découvertes scientifiques révolutionnaires.



 





 

Auteur: Internet

Info: https://armees.com/, Jean-Baptiste Giraud, 24 novembre 2024

[ abîme gravitationnel ] [ vortex spatial ] [ néant absorbant ]

 

Commentaires: 0

Ajouté à la BD par miguel

recombinaison latérale

Ce que nous savons sur la façon dont l'ADN passe d'une espèce à l'autre

Si vous avez les yeux de votre père ou les taches de rousseur de votre grand-mère, vous pouvez remercier les gènes transmis au sein de votre famille. Mais les chercheurs ont commencé à reconnaître qu’à un niveau biologique plus profond, un autre type d’héritage génétique se produit également. Les gènes peuvent glisser entre individus – ou même entre espèces – grâce à un processus connu sous le nom de transfert horizontal de gènes. Cela est peut-être loin d’être quotidien dans des organismes complexes comme les humains, mais sur une échelle de temps évolutive, cela pourrait se produire beaucoup plus souvent qu’on ne le pensait.

Les transferts horizontaux de gènes sont relativement courants dans le monde bactérien, où ils jouent un rôle important dans l’évolution et l’adaptation, ainsi que dans la propagation de la résistance aux antibiotiques. En fait, les biologistes évolutionnistes ont du mal à démêler certaines des premières branches de l’arbre de vie, car le nombre élevé de transferts horizontaux entre ces anciens organismes unicellulaires a si étroitement entrelacé les lignées. Les scientifiques savent également très peu de choses sur la façon dont ce processus pourrait avoir façonné de manière significative les génomes d’organismes complexes comme les plantes et les animaux.

Pendant de nombreuses années, les scientifiques qui soutenaient que des sauts horizontaux pouvaient se produire chez des espèces multicellulaires telles que les poissons ont été critiqués par leurs pairs. Une telle migration nécessite une chaîne d'événements improbables : un gène d'un individu doit d'une manière ou d'une autre pénétrer dans les cellules germinales qui produisent les spermatozoïdes ou les ovules d'un individu d'une autre espèce. De là, il doit pénétrer dans le noyau et pénétrer dans le génome de son nouvel hôte, qui doit ensuite produire une progéniture avec ces ovules ou spermatozoïdes pour transmettre ce génome modifié. Les moteurs importants de ce processus sont souvent les éléments génétiques appelés transposons, ou " gènes sauteurs ", qui peuvent se copier et se coller à différents endroits d’un génome, ou même d’un génome vers un autre. Parfois, ils semblent le faire en pénétrant dans le corps d'un nouvel hôte à l'intérieur d'un parasite ou d'un virus. C'est un parcours qui comporte de nombreuses étapes improbables, mais la biologie moléculaire suggère que ça existe.

Des études ont identifié des cas de transferts horizontaux chez un large éventail d’animaux, notamment des poissons, des grenouilles et des serpents. Pourtant, on ne sait pas exactement dans quelle mesure les organismes eucaryotes complexes partagent ainsi des gènes avec d’autres formes de vie. Les données recueillies jusqu'à présent suggèrent qu'il est plus probable que les gènes passent des bactéries aux eucaryotes que l'inverse : des expériences montrent que lorsque les gènes eucaryotes pénètrent dans les bactéries, celles-ci les éjectent le plus souvent.

Les biologistes ont fait de nombreuses découvertes surprenantes ces dernières années sur le mouvement des gènes entre les espèces.

Quoi de neuf et remarquable

En 2022, des chercheurs ont rapporté qu’un gène appelé BovB s’était déplacé indépendamment des serpents vers les grenouilles au moins 50 fois dans diverses parties de la planète. Bizarrement, ils ont constaté que cela se produisait beaucoup plus souvent à Madagascar qu’ailleurs. On ne sait pas pourquoi. Un facteur pourrait être le nombre élevé de parasites tels que les sangsues qui vivent sur l'île et se déplacent d'hôte en hôte, transportant des séquences d'ADN acquises dans le sang qu'elles ont bu. Les preuves d'anciens transferts de gènes horizontaux sont souvent brouillées avec le temps, mais les chercheurs espèrent désormais détecter les transferts sur le fait en examinant les organismes des sources chaudes du parc national de Yellowstone.

Le transfert horizontal de gènes semble également avoir joué un rôle dans la manière dont la vie marine autour des pôles a développé – ou plutôt emprunté – des défenses pour survivre au froid glacial. Les chercheurs ont pu montrer que les harengs et les éperlans, deux groupes de poissons qui ont divergé il y a plus de 250 millions d'années, utilisent le même gène pour fabriquer des protéines qui empêchent la croissance des cristaux de glace dans leur corps. Il a fallu des décennies pour convaincre les chercheurs que le gène devait être passé du hareng à l'éperlan. On ne sait pas exactement dans quelle mesure ce type de transfert horizontal se produit entre les cellules vertébrées, mais une étude a mis en évidence au moins 975 transferts entre 307 génomes de vertébrés, principalement chez les poissons à nageoires rayonnées.

Les transferts de gènes entre espèces concernent même les humains, ou plus particulièrement nos microbiomes, les puissantes armées de micro-organismes qui occupent nos intestins et d’autres parties du corps. Le microbiome d’un bébé humain vient d’abord de sa mère. Mais étonnamment, ces dons maternels ne sont pas toujours des cellules entières. De petits fragments d'ADN provenant des bactéries de la mère peuvent passer aux bactéries du bébé par le biais de transferts de gènes horizontaux, même des mois après la naissance. Ces gènes, qui proviennent souvent de souches bactériennes utiles chez la mère, pourraient jouer un rôle important dans la croissance et le développement du bébé. Bien qu’il ne soit pas clair si les transferts horizontaux de gènes profitent directement au bébé en lui transmettant des fonctions particulières, ils pourraient être indirectement utiles en assemblant un microbiome intestinal plus performant.



 

Auteur: Internet

Info: https://www.quantamagazine.org/ fév 2024, Yasemin Saplakoglu

[ échange ] [ transduction ] [ HVT ]

 

Commentaires: 0

Ajouté à la BD par Le sous-projectionniste

corrélation décalée

L’intrication quantique n’est pas instantanée : Des scientifiques ont enfin mesuré la vitesse à laquelle se produit !

L’idée que deux particules puissent s’influencer instantanément à des milliards de kilomètres de distance fascine autant qu’elle dérange. Et si ce lien mystérieux, connu sous le nom d’intrication quantique, n’était pas si immédiat qu’on le croyait ? C’est ce que révèle une expérience spectaculaire menée à l’Université technique de Vienne, qui pourrait bien bouleverser notre compréhension du temps, de l’espace… et de la réalité elle-même.

Qu’est-ce que l’intrication quantique ?

L’intrication quantique est sans doute l’un des phénomènes les plus mystérieux et fascinants de la physique. Pour comprendre ce que cela signifie, imaginez deux particules – par exemple, deux électrons – qui interagissent fortement pendant un certain temps, puis s’éloignent l’une de l’autre. Une fois cette interaction terminée, ces deux particules restent intriquées : elles partagent un état commun, comme si elles faisaient encore partie d’un tout, même séparées par des milliers de kilomètres.

Ce lien étrange a une conséquence spectaculaire : si vous mesurez une propriété de la première particule (comme sa polarisation ou son spin), vous connaissez instantanément celle de la seconde, sans même avoir besoin de la mesurer. Cela semble violer notre intuition selon laquelle l’information ne peut pas voyager plus vite que la lumière — d’où la célèbre expression d’Einstein, qui appelait cela une " action fantomatique à distance " (spooky action at a distance), car cela semblait presque magique.

Mais ce n’est pas de la magie : c’est la mécanique quantique. Et contrairement à une simple corrélation (comme deux gants dans une boîte, où connaître le droit vous révèle le gauche), ici, les propriétés ne sont pas définies à l’avance. Elles ne " prennent forme " qu’au moment de la mesure, ce qui rend l’effet d’autant plus déroutant.

Pendant longtemps, les scientifiques ont pensé que cette connexion entre particules intriquées se formait instantanément– comme un interrupteur qu’on actionne, sans délai. Mais en réalité, cela n’avait jamais été directement testé : on observait les effets de l’intrication, mais on ne savait pas combien de temps il fallait pour que ce lien quantique se crée entre deux particules. Était-ce vraiment immédiat ? Ou ce lien mettait-il, même à l’échelle microscopique, un tout petit peu de temps à s’installer ?

Une expérience aux frontières du temps

C’est ce défi vertigineux qu’ont relevé les chercheurs de la TU Wien, en Autriche. Dans leur expérience, décrite dans la prestigieuse revue Physical Review Letters, ils ont utilisé des impulsions laser ultra-brèves pour générer une intrication entre deux électrons dans un atome.

Le principe : en envoyant un éclair laser extrêmement intense et rapide sur un atome, un électron est expulsé, tandis qu’un second électron reste dans l’atome, mais passe à un état d’énergie plus élevé. Les deux électrons, bien que séparés, sont alors quantiquement liés.

Leur outil de mesure ? Le temps… à l’échelle de l’attoseconde, soit un milliardième de milliardième de seconde(0,000000000000000001 s). Grâce à deux faisceaux lasers distincts, les physiciens ont pu déterminer avec une précision inédite le moment où cette intrication se forme.

Verdict : pas si instantané

Contre toute attente, l’équipe a observé que l’intrication ne se produit pas immédiatement, mais nécessite un laps de temps mesurable, de l’ordre de 232 attosecondes dans certains cas.

Comme l’explique la chercheuse Iva Březinová :

" L’électron ne jaillit pas simplement de l’atome. C’est une onde qui se propage hors de l’atome, et cela prend un certain temps. C’est précisément durant cette phase que se forme l’intrication. "

Autrement dit, la connexion entre les deux électrons se construit progressivement, pendant que l’un quitte son orbite. On n’est donc plus face à un phénomène purement " magique " ou instantané, mais à un processus ultra-rapide, certes, mais quantifiable.

Ce que cela change

Pourquoi est-ce une découverte si importante ? Parce qu’elle remet en question une croyance centrale en physique quantique : celle de l’instantanéité absolue de l’intrication. Si ce lien prend du temps à se former, aussi court soit-il, cela pourrait ouvrir de nouvelles portes théoriques sur la façon dont les informations se propagent dans l’univers quantique.

Cela a également des conséquences pratiques : dans le domaine de l’informatique quantique, de la téléportation d’informations ou de la cryptographie quantique, comprendre à quel rythme exact les particules s’intriquent pourrait améliorer la performance et la sécurité des technologies futures.

Une révolution silencieuse

Ce n’est pas la première fois que la physique quantique bouscule notre intuition du réel. Après tout, elle nous a déjà appris que les particules peuvent être à deux endroits en même temps (superposition), ou que le simple fait d’observer une particule change son comportement (effet de l’observateur).

Mais cette nouvelle découverte ajoute une dimension supplémentaire : le temps lui-même devient un acteur dans l’intrication. Et à l’échelle de l’attoseconde, nos notions habituelles de passé, présent et futur deviennent floues. Même la question " Quand commence une relation quantique ? " prend une signification vertigineuse.

Et maintenant ?

L’équipe de la TU Wien compte poursuivre ses travaux pour affiner ces mesures et mieux comprendre les mécanismes qui régissent ce processus d’intrication. À l’heure où les ordinateurs quantiques s’apprêtent à bouleverser le monde numérique, savoir à quelle vitesse l’intrication se forme est plus qu’un détail : c’est une clé pour le futur.


 

 

Auteur: Internet

Info: Sciencepost.fr, Brice Louvet, 4 juillet 2025

[ vélocité ] [ chronos ] [ spectateur incarné ] [ connexion non locale ]

 

Commentaires: 0

Ajouté à la BD par miguel